| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tsmsinv.b |
|- B = ( Base ` G ) |
| 2 |
|
tsmsinv.p |
|- I = ( invg ` G ) |
| 3 |
|
tsmsinv.1 |
|- ( ph -> G e. CMnd ) |
| 4 |
|
tsmsinv.2 |
|- ( ph -> G e. TopGrp ) |
| 5 |
|
tsmsinv.a |
|- ( ph -> A e. V ) |
| 6 |
|
tsmsinv.f |
|- ( ph -> F : A --> B ) |
| 7 |
|
tsmsinv.x |
|- ( ph -> X e. ( G tsums F ) ) |
| 8 |
|
eqid |
|- ( TopOpen ` G ) = ( TopOpen ` G ) |
| 9 |
|
tgptps |
|- ( G e. TopGrp -> G e. TopSp ) |
| 10 |
4 9
|
syl |
|- ( ph -> G e. TopSp ) |
| 11 |
|
tgpgrp |
|- ( G e. TopGrp -> G e. Grp ) |
| 12 |
4 11
|
syl |
|- ( ph -> G e. Grp ) |
| 13 |
|
isabl |
|- ( G e. Abel <-> ( G e. Grp /\ G e. CMnd ) ) |
| 14 |
12 3 13
|
sylanbrc |
|- ( ph -> G e. Abel ) |
| 15 |
1 2
|
invghm |
|- ( G e. Abel <-> I e. ( G GrpHom G ) ) |
| 16 |
14 15
|
sylib |
|- ( ph -> I e. ( G GrpHom G ) ) |
| 17 |
|
ghmmhm |
|- ( I e. ( G GrpHom G ) -> I e. ( G MndHom G ) ) |
| 18 |
16 17
|
syl |
|- ( ph -> I e. ( G MndHom G ) ) |
| 19 |
8 2
|
tgpinv |
|- ( G e. TopGrp -> I e. ( ( TopOpen ` G ) Cn ( TopOpen ` G ) ) ) |
| 20 |
4 19
|
syl |
|- ( ph -> I e. ( ( TopOpen ` G ) Cn ( TopOpen ` G ) ) ) |
| 21 |
1 8 8 3 10 3 10 18 20 5 6 7
|
tsmsmhm |
|- ( ph -> ( I ` X ) e. ( G tsums ( I o. F ) ) ) |