Step |
Hyp |
Ref |
Expression |
1 |
|
tsmsinv.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
tsmsinv.p |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
3 |
|
tsmsinv.1 |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
4 |
|
tsmsinv.2 |
⊢ ( 𝜑 → 𝐺 ∈ TopGrp ) |
5 |
|
tsmsinv.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
6 |
|
tsmsinv.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
7 |
|
tsmsinv.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) |
8 |
|
eqid |
⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) |
9 |
|
tgptps |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopSp ) |
10 |
4 9
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ TopSp ) |
11 |
|
tgpgrp |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) |
12 |
4 11
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
13 |
|
isabl |
⊢ ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) ) |
14 |
12 3 13
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
15 |
1 2
|
invghm |
⊢ ( 𝐺 ∈ Abel ↔ 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ) |
16 |
14 15
|
sylib |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ) |
17 |
|
ghmmhm |
⊢ ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) → 𝐼 ∈ ( 𝐺 MndHom 𝐺 ) ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝐺 MndHom 𝐺 ) ) |
19 |
8 2
|
tgpinv |
⊢ ( 𝐺 ∈ TopGrp → 𝐼 ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
20 |
4 19
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
21 |
1 8 8 3 10 3 10 18 20 5 6 7
|
tsmsmhm |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ∈ ( 𝐺 tsums ( 𝐼 ∘ 𝐹 ) ) ) |