| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tsmsinv.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
tsmsinv.p |
⊢ 𝐼 = ( invg ‘ 𝐺 ) |
| 3 |
|
tsmsinv.1 |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 4 |
|
tsmsinv.2 |
⊢ ( 𝜑 → 𝐺 ∈ TopGrp ) |
| 5 |
|
tsmsinv.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 6 |
|
tsmsinv.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 7 |
|
tsmsinv.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) |
| 8 |
|
eqid |
⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) |
| 9 |
|
tgptps |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopSp ) |
| 10 |
4 9
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ TopSp ) |
| 11 |
|
tgpgrp |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) |
| 12 |
4 11
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 13 |
|
isabl |
⊢ ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) ) |
| 14 |
12 3 13
|
sylanbrc |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
| 15 |
1 2
|
invghm |
⊢ ( 𝐺 ∈ Abel ↔ 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ) |
| 16 |
14 15
|
sylib |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) ) |
| 17 |
|
ghmmhm |
⊢ ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) → 𝐼 ∈ ( 𝐺 MndHom 𝐺 ) ) |
| 18 |
16 17
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝐺 MndHom 𝐺 ) ) |
| 19 |
8 2
|
tgpinv |
⊢ ( 𝐺 ∈ TopGrp → 𝐼 ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 20 |
4 19
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
| 21 |
1 8 8 3 10 3 10 18 20 5 6 7
|
tsmsmhm |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ∈ ( 𝐺 tsums ( 𝐼 ∘ 𝐹 ) ) ) |