Metamath Proof Explorer


Theorem tsmsinv

Description: Inverse of an infinite group sum. (Contributed by Mario Carneiro, 20-Sep-2015)

Ref Expression
Hypotheses tsmsinv.b 𝐵 = ( Base ‘ 𝐺 )
tsmsinv.p 𝐼 = ( invg𝐺 )
tsmsinv.1 ( 𝜑𝐺 ∈ CMnd )
tsmsinv.2 ( 𝜑𝐺 ∈ TopGrp )
tsmsinv.a ( 𝜑𝐴𝑉 )
tsmsinv.f ( 𝜑𝐹 : 𝐴𝐵 )
tsmsinv.x ( 𝜑𝑋 ∈ ( 𝐺 tsums 𝐹 ) )
Assertion tsmsinv ( 𝜑 → ( 𝐼𝑋 ) ∈ ( 𝐺 tsums ( 𝐼𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 tsmsinv.b 𝐵 = ( Base ‘ 𝐺 )
2 tsmsinv.p 𝐼 = ( invg𝐺 )
3 tsmsinv.1 ( 𝜑𝐺 ∈ CMnd )
4 tsmsinv.2 ( 𝜑𝐺 ∈ TopGrp )
5 tsmsinv.a ( 𝜑𝐴𝑉 )
6 tsmsinv.f ( 𝜑𝐹 : 𝐴𝐵 )
7 tsmsinv.x ( 𝜑𝑋 ∈ ( 𝐺 tsums 𝐹 ) )
8 eqid ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 )
9 tgptps ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopSp )
10 4 9 syl ( 𝜑𝐺 ∈ TopSp )
11 tgpgrp ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp )
12 4 11 syl ( 𝜑𝐺 ∈ Grp )
13 isabl ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) )
14 12 3 13 sylanbrc ( 𝜑𝐺 ∈ Abel )
15 1 2 invghm ( 𝐺 ∈ Abel ↔ 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) )
16 14 15 sylib ( 𝜑𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) )
17 ghmmhm ( 𝐼 ∈ ( 𝐺 GrpHom 𝐺 ) → 𝐼 ∈ ( 𝐺 MndHom 𝐺 ) )
18 16 17 syl ( 𝜑𝐼 ∈ ( 𝐺 MndHom 𝐺 ) )
19 8 2 tgpinv ( 𝐺 ∈ TopGrp → 𝐼 ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) )
20 4 19 syl ( 𝜑𝐼 ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) )
21 1 8 8 3 10 3 10 18 20 5 6 7 tsmsmhm ( 𝜑 → ( 𝐼𝑋 ) ∈ ( 𝐺 tsums ( 𝐼𝐹 ) ) )