Metamath Proof Explorer


Theorem tsmssub

Description: The difference of two infinite group sums. (Contributed by Mario Carneiro, 20-Sep-2015)

Ref Expression
Hypotheses tsmssub.b 𝐵 = ( Base ‘ 𝐺 )
tsmssub.p = ( -g𝐺 )
tsmssub.1 ( 𝜑𝐺 ∈ CMnd )
tsmssub.2 ( 𝜑𝐺 ∈ TopGrp )
tsmssub.a ( 𝜑𝐴𝑉 )
tsmssub.f ( 𝜑𝐹 : 𝐴𝐵 )
tsmssub.h ( 𝜑𝐻 : 𝐴𝐵 )
tsmssub.x ( 𝜑𝑋 ∈ ( 𝐺 tsums 𝐹 ) )
tsmssub.y ( 𝜑𝑌 ∈ ( 𝐺 tsums 𝐻 ) )
Assertion tsmssub ( 𝜑 → ( 𝑋 𝑌 ) ∈ ( 𝐺 tsums ( 𝐹f 𝐻 ) ) )

Proof

Step Hyp Ref Expression
1 tsmssub.b 𝐵 = ( Base ‘ 𝐺 )
2 tsmssub.p = ( -g𝐺 )
3 tsmssub.1 ( 𝜑𝐺 ∈ CMnd )
4 tsmssub.2 ( 𝜑𝐺 ∈ TopGrp )
5 tsmssub.a ( 𝜑𝐴𝑉 )
6 tsmssub.f ( 𝜑𝐹 : 𝐴𝐵 )
7 tsmssub.h ( 𝜑𝐻 : 𝐴𝐵 )
8 tsmssub.x ( 𝜑𝑋 ∈ ( 𝐺 tsums 𝐹 ) )
9 tsmssub.y ( 𝜑𝑌 ∈ ( 𝐺 tsums 𝐻 ) )
10 eqid ( +g𝐺 ) = ( +g𝐺 )
11 tgptmd ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd )
12 4 11 syl ( 𝜑𝐺 ∈ TopMnd )
13 tgpgrp ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp )
14 eqid ( invg𝐺 ) = ( invg𝐺 )
15 1 14 grpinvf ( 𝐺 ∈ Grp → ( invg𝐺 ) : 𝐵𝐵 )
16 4 13 15 3syl ( 𝜑 → ( invg𝐺 ) : 𝐵𝐵 )
17 fco ( ( ( invg𝐺 ) : 𝐵𝐵𝐻 : 𝐴𝐵 ) → ( ( invg𝐺 ) ∘ 𝐻 ) : 𝐴𝐵 )
18 16 7 17 syl2anc ( 𝜑 → ( ( invg𝐺 ) ∘ 𝐻 ) : 𝐴𝐵 )
19 1 14 3 4 5 7 9 tsmsinv ( 𝜑 → ( ( invg𝐺 ) ‘ 𝑌 ) ∈ ( 𝐺 tsums ( ( invg𝐺 ) ∘ 𝐻 ) ) )
20 1 10 3 12 5 6 18 8 19 tsmsadd ( 𝜑 → ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑌 ) ) ∈ ( 𝐺 tsums ( 𝐹f ( +g𝐺 ) ( ( invg𝐺 ) ∘ 𝐻 ) ) ) )
21 tgptps ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopSp )
22 4 21 syl ( 𝜑𝐺 ∈ TopSp )
23 1 3 22 5 6 tsmscl ( 𝜑 → ( 𝐺 tsums 𝐹 ) ⊆ 𝐵 )
24 23 8 sseldd ( 𝜑𝑋𝐵 )
25 1 3 22 5 7 tsmscl ( 𝜑 → ( 𝐺 tsums 𝐻 ) ⊆ 𝐵 )
26 25 9 sseldd ( 𝜑𝑌𝐵 )
27 1 10 14 2 grpsubval ( ( 𝑋𝐵𝑌𝐵 ) → ( 𝑋 𝑌 ) = ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑌 ) ) )
28 24 26 27 syl2anc ( 𝜑 → ( 𝑋 𝑌 ) = ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑌 ) ) )
29 6 ffvelrnda ( ( 𝜑𝑘𝐴 ) → ( 𝐹𝑘 ) ∈ 𝐵 )
30 7 ffvelrnda ( ( 𝜑𝑘𝐴 ) → ( 𝐻𝑘 ) ∈ 𝐵 )
31 1 10 14 2 grpsubval ( ( ( 𝐹𝑘 ) ∈ 𝐵 ∧ ( 𝐻𝑘 ) ∈ 𝐵 ) → ( ( 𝐹𝑘 ) ( 𝐻𝑘 ) ) = ( ( 𝐹𝑘 ) ( +g𝐺 ) ( ( invg𝐺 ) ‘ ( 𝐻𝑘 ) ) ) )
32 29 30 31 syl2anc ( ( 𝜑𝑘𝐴 ) → ( ( 𝐹𝑘 ) ( 𝐻𝑘 ) ) = ( ( 𝐹𝑘 ) ( +g𝐺 ) ( ( invg𝐺 ) ‘ ( 𝐻𝑘 ) ) ) )
33 32 mpteq2dva ( 𝜑 → ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ( 𝐻𝑘 ) ) ) = ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ( +g𝐺 ) ( ( invg𝐺 ) ‘ ( 𝐻𝑘 ) ) ) ) )
34 6 feqmptd ( 𝜑𝐹 = ( 𝑘𝐴 ↦ ( 𝐹𝑘 ) ) )
35 7 feqmptd ( 𝜑𝐻 = ( 𝑘𝐴 ↦ ( 𝐻𝑘 ) ) )
36 5 29 30 34 35 offval2 ( 𝜑 → ( 𝐹f 𝐻 ) = ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ( 𝐻𝑘 ) ) ) )
37 fvexd ( ( 𝜑𝑘𝐴 ) → ( ( invg𝐺 ) ‘ ( 𝐻𝑘 ) ) ∈ V )
38 16 feqmptd ( 𝜑 → ( invg𝐺 ) = ( 𝑥𝐵 ↦ ( ( invg𝐺 ) ‘ 𝑥 ) ) )
39 fveq2 ( 𝑥 = ( 𝐻𝑘 ) → ( ( invg𝐺 ) ‘ 𝑥 ) = ( ( invg𝐺 ) ‘ ( 𝐻𝑘 ) ) )
40 30 35 38 39 fmptco ( 𝜑 → ( ( invg𝐺 ) ∘ 𝐻 ) = ( 𝑘𝐴 ↦ ( ( invg𝐺 ) ‘ ( 𝐻𝑘 ) ) ) )
41 5 29 37 34 40 offval2 ( 𝜑 → ( 𝐹f ( +g𝐺 ) ( ( invg𝐺 ) ∘ 𝐻 ) ) = ( 𝑘𝐴 ↦ ( ( 𝐹𝑘 ) ( +g𝐺 ) ( ( invg𝐺 ) ‘ ( 𝐻𝑘 ) ) ) ) )
42 33 36 41 3eqtr4d ( 𝜑 → ( 𝐹f 𝐻 ) = ( 𝐹f ( +g𝐺 ) ( ( invg𝐺 ) ∘ 𝐻 ) ) )
43 42 oveq2d ( 𝜑 → ( 𝐺 tsums ( 𝐹f 𝐻 ) ) = ( 𝐺 tsums ( 𝐹f ( +g𝐺 ) ( ( invg𝐺 ) ∘ 𝐻 ) ) ) )
44 20 28 43 3eltr4d ( 𝜑 → ( 𝑋 𝑌 ) ∈ ( 𝐺 tsums ( 𝐹f 𝐻 ) ) )