| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tsmssub.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
tsmssub.p |
⊢ − = ( -g ‘ 𝐺 ) |
| 3 |
|
tsmssub.1 |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 4 |
|
tsmssub.2 |
⊢ ( 𝜑 → 𝐺 ∈ TopGrp ) |
| 5 |
|
tsmssub.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 6 |
|
tsmssub.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 7 |
|
tsmssub.h |
⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝐵 ) |
| 8 |
|
tsmssub.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) |
| 9 |
|
tsmssub.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐺 tsums 𝐻 ) ) |
| 10 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 11 |
|
tgptmd |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd ) |
| 12 |
4 11
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ TopMnd ) |
| 13 |
|
tgpgrp |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) |
| 14 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 15 |
1 14
|
grpinvf |
⊢ ( 𝐺 ∈ Grp → ( invg ‘ 𝐺 ) : 𝐵 ⟶ 𝐵 ) |
| 16 |
4 13 15
|
3syl |
⊢ ( 𝜑 → ( invg ‘ 𝐺 ) : 𝐵 ⟶ 𝐵 ) |
| 17 |
|
fco |
⊢ ( ( ( invg ‘ 𝐺 ) : 𝐵 ⟶ 𝐵 ∧ 𝐻 : 𝐴 ⟶ 𝐵 ) → ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) : 𝐴 ⟶ 𝐵 ) |
| 18 |
16 7 17
|
syl2anc |
⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) : 𝐴 ⟶ 𝐵 ) |
| 19 |
1 14 3 4 5 7 9
|
tsmsinv |
⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ ( 𝐺 tsums ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) |
| 20 |
1 10 3 12 5 6 18 8 19
|
tsmsadd |
⊢ ( 𝜑 → ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ∈ ( 𝐺 tsums ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) ) |
| 21 |
|
tgptps |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopSp ) |
| 22 |
4 21
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ TopSp ) |
| 23 |
1 3 22 5 6
|
tsmscl |
⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) ⊆ 𝐵 ) |
| 24 |
23 8
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 25 |
1 3 22 5 7
|
tsmscl |
⊢ ( 𝜑 → ( 𝐺 tsums 𝐻 ) ⊆ 𝐵 ) |
| 26 |
25 9
|
sseldd |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 27 |
1 10 14 2
|
grpsubval |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 28 |
24 26 27
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 29 |
6
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
| 30 |
7
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑘 ) ∈ 𝐵 ) |
| 31 |
1 10 14 2
|
grpsubval |
⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑘 ) ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |
| 32 |
29 30 31
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |
| 33 |
32
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
| 34 |
6
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 35 |
7
|
feqmptd |
⊢ ( 𝜑 → 𝐻 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐻 ‘ 𝑘 ) ) ) |
| 36 |
5 29 30 34 35
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐻 ) = ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) ) ) |
| 37 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ∈ V ) |
| 38 |
16
|
feqmptd |
⊢ ( 𝜑 → ( invg ‘ 𝐺 ) = ( 𝑥 ∈ 𝐵 ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 39 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝐻 ‘ 𝑘 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) |
| 40 |
30 35 38 39
|
fmptco |
⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) = ( 𝑘 ∈ 𝐴 ↦ ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |
| 41 |
5 29 37 34 40
|
offval2 |
⊢ ( 𝜑 → ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
| 42 |
33 36 41
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐻 ) = ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) |
| 43 |
42
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 tsums ( 𝐹 ∘f − 𝐻 ) ) = ( 𝐺 tsums ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) ) |
| 44 |
20 28 43
|
3eltr4d |
⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) ∈ ( 𝐺 tsums ( 𝐹 ∘f − 𝐻 ) ) ) |