| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgptsmscls.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
tgptsmscls.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
| 3 |
|
tgptsmscls.1 |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 4 |
|
tgptsmscls.2 |
⊢ ( 𝜑 → 𝐺 ∈ TopGrp ) |
| 5 |
|
tgptsmscls.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 6 |
|
tgptsmscls.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 7 |
|
tgptsmscls.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) |
| 8 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐺 ∈ TopGrp ) |
| 9 |
|
tgpgrp |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) |
| 10 |
8 9
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐺 ∈ Grp ) |
| 11 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 12 |
11
|
0subg |
⊢ ( 𝐺 ∈ Grp → { ( 0g ‘ 𝐺 ) } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 13 |
10 12
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → { ( 0g ‘ 𝐺 ) } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 14 |
2
|
clssubg |
⊢ ( ( 𝐺 ∈ TopGrp ∧ { ( 0g ‘ 𝐺 ) } ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 15 |
8 13 14
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 16 |
|
eqid |
⊢ ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) = ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) |
| 17 |
1 16
|
eqger |
⊢ ( ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) Er 𝐵 ) |
| 18 |
15 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) Er 𝐵 ) |
| 19 |
|
tgptps |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopSp ) |
| 20 |
4 19
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ TopSp ) |
| 21 |
1 3 20 5 6
|
tsmscl |
⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) ⊆ 𝐵 ) |
| 22 |
21
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑥 ∈ 𝐵 ) |
| 23 |
21 7
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑋 ∈ 𝐵 ) |
| 25 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
| 26 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐺 ∈ CMnd ) |
| 27 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐴 ∈ 𝑉 ) |
| 28 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 29 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑋 ∈ ( 𝐺 tsums 𝐹 ) ) |
| 30 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) |
| 31 |
1 25 26 8 27 28 28 29 30
|
tsmssub |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑋 ( -g ‘ 𝐺 ) 𝑥 ) ∈ ( 𝐺 tsums ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐹 ) ) ) |
| 32 |
28
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) |
| 33 |
28
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 34 |
27 32 32 33 33
|
offval2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐹 ) = ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 35 |
10
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐺 ∈ Grp ) |
| 36 |
1 11 25
|
grpsubid |
⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑘 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑘 ) ) = ( 0g ‘ 𝐺 ) ) |
| 37 |
35 32 36
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑘 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑘 ) ) = ( 0g ‘ 𝐺 ) ) |
| 38 |
37
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑘 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑘 ) ( -g ‘ 𝐺 ) ( 𝐹 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐺 ) ) ) |
| 39 |
34 38
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐹 ) = ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐺 ) ) ) |
| 40 |
39
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐺 tsums ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐹 ) ) = ( 𝐺 tsums ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐺 ) ) ) ) |
| 41 |
8 19
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐺 ∈ TopSp ) |
| 42 |
1 11
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 43 |
10 42
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 44 |
43
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 45 |
44
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐺 ) ) : 𝐴 ⟶ 𝐵 ) |
| 46 |
|
fconstmpt |
⊢ ( 𝐴 × { ( 0g ‘ 𝐺 ) } ) = ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐺 ) ) |
| 47 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ V ) |
| 48 |
5 47
|
fczfsuppd |
⊢ ( 𝜑 → ( 𝐴 × { ( 0g ‘ 𝐺 ) } ) finSupp ( 0g ‘ 𝐺 ) ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐴 × { ( 0g ‘ 𝐺 ) } ) finSupp ( 0g ‘ 𝐺 ) ) |
| 50 |
46 49
|
eqbrtrrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐺 ) ) finSupp ( 0g ‘ 𝐺 ) ) |
| 51 |
1 11 26 41 27 45 50 2
|
tsmsgsum |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐺 tsums ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐺 ) ) ) = ( ( cls ‘ 𝐽 ) ‘ { ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐺 ) ) ) } ) ) |
| 52 |
|
cmnmnd |
⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) |
| 53 |
26 52
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐺 ∈ Mnd ) |
| 54 |
11
|
gsumz |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐺 ) ) ) = ( 0g ‘ 𝐺 ) ) |
| 55 |
53 27 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐺 ) ) ) = ( 0g ‘ 𝐺 ) ) |
| 56 |
55
|
sneqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → { ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐺 ) ) ) } = { ( 0g ‘ 𝐺 ) } ) |
| 57 |
56
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( ( cls ‘ 𝐽 ) ‘ { ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ ( 0g ‘ 𝐺 ) ) ) } ) = ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) |
| 58 |
40 51 57
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝐺 tsums ( 𝐹 ∘f ( -g ‘ 𝐺 ) 𝐹 ) ) = ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) |
| 59 |
31 58
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑋 ( -g ‘ 𝐺 ) 𝑥 ) ∈ ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) |
| 60 |
|
isabl |
⊢ ( 𝐺 ∈ Abel ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd ) ) |
| 61 |
10 26 60
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝐺 ∈ Abel ) |
| 62 |
1
|
subgss |
⊢ ( ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ∈ ( SubGrp ‘ 𝐺 ) → ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ⊆ 𝐵 ) |
| 63 |
15 62
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ⊆ 𝐵 ) |
| 64 |
1 25 16
|
eqgabl |
⊢ ( ( 𝐺 ∈ Abel ∧ ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ⊆ 𝐵 ) → ( 𝑥 ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) 𝑋 ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑋 ( -g ‘ 𝐺 ) 𝑥 ) ∈ ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) ) ) |
| 65 |
61 63 64
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → ( 𝑥 ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) 𝑋 ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑋 ( -g ‘ 𝐺 ) 𝑥 ) ∈ ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) ) ) |
| 66 |
22 24 59 65
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑥 ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) 𝑋 ) |
| 67 |
18 66
|
ersym |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑋 ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) 𝑥 ) |
| 68 |
16
|
releqg |
⊢ Rel ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) |
| 69 |
|
relelec |
⊢ ( Rel ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) → ( 𝑥 ∈ [ 𝑋 ] ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) ↔ 𝑋 ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) 𝑥 ) ) |
| 70 |
68 69
|
ax-mp |
⊢ ( 𝑥 ∈ [ 𝑋 ] ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) ↔ 𝑋 ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) 𝑥 ) |
| 71 |
67 70
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑥 ∈ [ 𝑋 ] ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) ) |
| 72 |
|
eqid |
⊢ ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) = ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) |
| 73 |
1 2 11 16 72
|
snclseqg |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑋 ∈ 𝐵 ) → [ 𝑋 ] ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) = ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) ) |
| 74 |
8 24 73
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → [ 𝑋 ] ( 𝐺 ~QG ( ( cls ‘ 𝐽 ) ‘ { ( 0g ‘ 𝐺 ) } ) ) = ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) ) |
| 75 |
71 74
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 tsums 𝐹 ) ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) ) |
| 76 |
75
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 tsums 𝐹 ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) ) ) |
| 77 |
76
|
ssrdv |
⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) ) |
| 78 |
1 2 3 20 5 6 7
|
tsmscls |
⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) ⊆ ( 𝐺 tsums 𝐹 ) ) |
| 79 |
77 78
|
eqssd |
⊢ ( 𝜑 → ( 𝐺 tsums 𝐹 ) = ( ( cls ‘ 𝐽 ) ‘ { 𝑋 } ) ) |