Metamath Proof Explorer


Theorem snclseqg

Description: The coset of the closure of the identity is the closure of a point. (Contributed by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses snclseqg.x 𝑋 = ( Base ‘ 𝐺 )
snclseqg.j 𝐽 = ( TopOpen ‘ 𝐺 )
snclseqg.z 0 = ( 0g𝐺 )
snclseqg.r = ( 𝐺 ~QG 𝑆 )
snclseqg.s 𝑆 = ( ( cls ‘ 𝐽 ) ‘ { 0 } )
Assertion snclseqg ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → [ 𝐴 ] = ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) )

Proof

Step Hyp Ref Expression
1 snclseqg.x 𝑋 = ( Base ‘ 𝐺 )
2 snclseqg.j 𝐽 = ( TopOpen ‘ 𝐺 )
3 snclseqg.z 0 = ( 0g𝐺 )
4 snclseqg.r = ( 𝐺 ~QG 𝑆 )
5 snclseqg.s 𝑆 = ( ( cls ‘ 𝐽 ) ‘ { 0 } )
6 5 imaeq2i ( ( 𝑥𝑋 ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) ) “ 𝑆 ) = ( ( 𝑥𝑋 ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) ) “ ( ( cls ‘ 𝐽 ) ‘ { 0 } ) )
7 tgpgrp ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp )
8 7 adantr ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → 𝐺 ∈ Grp )
9 2 1 tgptopon ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
10 9 adantr ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
11 topontop ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top )
12 10 11 syl ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → 𝐽 ∈ Top )
13 1 3 grpidcl ( 𝐺 ∈ Grp → 0𝑋 )
14 8 13 syl ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → 0𝑋 )
15 14 snssd ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → { 0 } ⊆ 𝑋 )
16 toponuni ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = 𝐽 )
17 10 16 syl ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → 𝑋 = 𝐽 )
18 15 17 sseqtrd ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → { 0 } ⊆ 𝐽 )
19 eqid 𝐽 = 𝐽
20 19 clsss3 ( ( 𝐽 ∈ Top ∧ { 0 } ⊆ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ { 0 } ) ⊆ 𝐽 )
21 12 18 20 syl2anc ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ { 0 } ) ⊆ 𝐽 )
22 21 17 sseqtrrd ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ { 0 } ) ⊆ 𝑋 )
23 5 22 eqsstrid ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → 𝑆𝑋 )
24 simpr ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → 𝐴𝑋 )
25 eqid ( +g𝐺 ) = ( +g𝐺 )
26 1 4 25 eqglact ( ( 𝐺 ∈ Grp ∧ 𝑆𝑋𝐴𝑋 ) → [ 𝐴 ] = ( ( 𝑥𝑋 ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) ) “ 𝑆 ) )
27 8 23 24 26 syl3anc ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → [ 𝐴 ] = ( ( 𝑥𝑋 ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) ) “ 𝑆 ) )
28 eqid ( 𝑥𝑋 ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) ) = ( 𝑥𝑋 ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) )
29 28 1 25 2 tgplacthmeo ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → ( 𝑥𝑋 ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) ) ∈ ( 𝐽 Homeo 𝐽 ) )
30 19 hmeocls ( ( ( 𝑥𝑋 ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ∧ { 0 } ⊆ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ ( ( 𝑥𝑋 ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) ) “ { 0 } ) ) = ( ( 𝑥𝑋 ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) ) “ ( ( cls ‘ 𝐽 ) ‘ { 0 } ) ) )
31 29 18 30 syl2anc ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( ( 𝑥𝑋 ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) ) “ { 0 } ) ) = ( ( 𝑥𝑋 ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) ) “ ( ( cls ‘ 𝐽 ) ‘ { 0 } ) ) )
32 6 27 31 3eqtr4a ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → [ 𝐴 ] = ( ( cls ‘ 𝐽 ) ‘ ( ( 𝑥𝑋 ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) ) “ { 0 } ) ) )
33 df-ima ( ( 𝑥𝑋 ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) ) “ { 0 } ) = ran ( ( 𝑥𝑋 ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) ) ↾ { 0 } )
34 15 resmptd ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → ( ( 𝑥𝑋 ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) ) ↾ { 0 } ) = ( 𝑥 ∈ { 0 } ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) ) )
35 34 rneqd ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → ran ( ( 𝑥𝑋 ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) ) ↾ { 0 } ) = ran ( 𝑥 ∈ { 0 } ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) ) )
36 33 35 eqtrid ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → ( ( 𝑥𝑋 ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) ) “ { 0 } ) = ran ( 𝑥 ∈ { 0 } ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) ) )
37 3 fvexi 0 ∈ V
38 oveq2 ( 𝑥 = 0 → ( 𝐴 ( +g𝐺 ) 𝑥 ) = ( 𝐴 ( +g𝐺 ) 0 ) )
39 38 eqeq2d ( 𝑥 = 0 → ( 𝑦 = ( 𝐴 ( +g𝐺 ) 𝑥 ) ↔ 𝑦 = ( 𝐴 ( +g𝐺 ) 0 ) ) )
40 37 39 rexsn ( ∃ 𝑥 ∈ { 0 } 𝑦 = ( 𝐴 ( +g𝐺 ) 𝑥 ) ↔ 𝑦 = ( 𝐴 ( +g𝐺 ) 0 ) )
41 1 25 3 grprid ( ( 𝐺 ∈ Grp ∧ 𝐴𝑋 ) → ( 𝐴 ( +g𝐺 ) 0 ) = 𝐴 )
42 7 41 sylan ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → ( 𝐴 ( +g𝐺 ) 0 ) = 𝐴 )
43 42 eqeq2d ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → ( 𝑦 = ( 𝐴 ( +g𝐺 ) 0 ) ↔ 𝑦 = 𝐴 ) )
44 40 43 syl5bb ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → ( ∃ 𝑥 ∈ { 0 } 𝑦 = ( 𝐴 ( +g𝐺 ) 𝑥 ) ↔ 𝑦 = 𝐴 ) )
45 44 abbidv ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → { 𝑦 ∣ ∃ 𝑥 ∈ { 0 } 𝑦 = ( 𝐴 ( +g𝐺 ) 𝑥 ) } = { 𝑦𝑦 = 𝐴 } )
46 eqid ( 𝑥 ∈ { 0 } ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) ) = ( 𝑥 ∈ { 0 } ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) )
47 46 rnmpt ran ( 𝑥 ∈ { 0 } ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) ) = { 𝑦 ∣ ∃ 𝑥 ∈ { 0 } 𝑦 = ( 𝐴 ( +g𝐺 ) 𝑥 ) }
48 df-sn { 𝐴 } = { 𝑦𝑦 = 𝐴 }
49 45 47 48 3eqtr4g ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → ran ( 𝑥 ∈ { 0 } ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) ) = { 𝐴 } )
50 36 49 eqtrd ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → ( ( 𝑥𝑋 ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) ) “ { 0 } ) = { 𝐴 } )
51 50 fveq2d ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ ( ( 𝑥𝑋 ↦ ( 𝐴 ( +g𝐺 ) 𝑥 ) ) “ { 0 } ) ) = ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) )
52 32 51 eqtrd ( ( 𝐺 ∈ TopGrp ∧ 𝐴𝑋 ) → [ 𝐴 ] = ( ( cls ‘ 𝐽 ) ‘ { 𝐴 } ) )