| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgptsmscls.b |
|- B = ( Base ` G ) |
| 2 |
|
tgptsmscls.j |
|- J = ( TopOpen ` G ) |
| 3 |
|
tgptsmscls.1 |
|- ( ph -> G e. CMnd ) |
| 4 |
|
tgptsmscls.2 |
|- ( ph -> G e. TopGrp ) |
| 5 |
|
tgptsmscls.a |
|- ( ph -> A e. V ) |
| 6 |
|
tgptsmscls.f |
|- ( ph -> F : A --> B ) |
| 7 |
|
tgptsmscls.x |
|- ( ph -> X e. ( G tsums F ) ) |
| 8 |
4
|
adantr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> G e. TopGrp ) |
| 9 |
|
tgpgrp |
|- ( G e. TopGrp -> G e. Grp ) |
| 10 |
8 9
|
syl |
|- ( ( ph /\ x e. ( G tsums F ) ) -> G e. Grp ) |
| 11 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 12 |
11
|
0subg |
|- ( G e. Grp -> { ( 0g ` G ) } e. ( SubGrp ` G ) ) |
| 13 |
10 12
|
syl |
|- ( ( ph /\ x e. ( G tsums F ) ) -> { ( 0g ` G ) } e. ( SubGrp ` G ) ) |
| 14 |
2
|
clssubg |
|- ( ( G e. TopGrp /\ { ( 0g ` G ) } e. ( SubGrp ` G ) ) -> ( ( cls ` J ) ` { ( 0g ` G ) } ) e. ( SubGrp ` G ) ) |
| 15 |
8 13 14
|
syl2anc |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( ( cls ` J ) ` { ( 0g ` G ) } ) e. ( SubGrp ` G ) ) |
| 16 |
|
eqid |
|- ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) = ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) |
| 17 |
1 16
|
eqger |
|- ( ( ( cls ` J ) ` { ( 0g ` G ) } ) e. ( SubGrp ` G ) -> ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) Er B ) |
| 18 |
15 17
|
syl |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) Er B ) |
| 19 |
|
tgptps |
|- ( G e. TopGrp -> G e. TopSp ) |
| 20 |
4 19
|
syl |
|- ( ph -> G e. TopSp ) |
| 21 |
1 3 20 5 6
|
tsmscl |
|- ( ph -> ( G tsums F ) C_ B ) |
| 22 |
21
|
sselda |
|- ( ( ph /\ x e. ( G tsums F ) ) -> x e. B ) |
| 23 |
21 7
|
sseldd |
|- ( ph -> X e. B ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> X e. B ) |
| 25 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
| 26 |
3
|
adantr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> G e. CMnd ) |
| 27 |
5
|
adantr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> A e. V ) |
| 28 |
6
|
adantr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> F : A --> B ) |
| 29 |
7
|
adantr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> X e. ( G tsums F ) ) |
| 30 |
|
simpr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> x e. ( G tsums F ) ) |
| 31 |
1 25 26 8 27 28 28 29 30
|
tsmssub |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( X ( -g ` G ) x ) e. ( G tsums ( F oF ( -g ` G ) F ) ) ) |
| 32 |
28
|
ffvelcdmda |
|- ( ( ( ph /\ x e. ( G tsums F ) ) /\ k e. A ) -> ( F ` k ) e. B ) |
| 33 |
28
|
feqmptd |
|- ( ( ph /\ x e. ( G tsums F ) ) -> F = ( k e. A |-> ( F ` k ) ) ) |
| 34 |
27 32 32 33 33
|
offval2 |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( F oF ( -g ` G ) F ) = ( k e. A |-> ( ( F ` k ) ( -g ` G ) ( F ` k ) ) ) ) |
| 35 |
10
|
adantr |
|- ( ( ( ph /\ x e. ( G tsums F ) ) /\ k e. A ) -> G e. Grp ) |
| 36 |
1 11 25
|
grpsubid |
|- ( ( G e. Grp /\ ( F ` k ) e. B ) -> ( ( F ` k ) ( -g ` G ) ( F ` k ) ) = ( 0g ` G ) ) |
| 37 |
35 32 36
|
syl2anc |
|- ( ( ( ph /\ x e. ( G tsums F ) ) /\ k e. A ) -> ( ( F ` k ) ( -g ` G ) ( F ` k ) ) = ( 0g ` G ) ) |
| 38 |
37
|
mpteq2dva |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( k e. A |-> ( ( F ` k ) ( -g ` G ) ( F ` k ) ) ) = ( k e. A |-> ( 0g ` G ) ) ) |
| 39 |
34 38
|
eqtrd |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( F oF ( -g ` G ) F ) = ( k e. A |-> ( 0g ` G ) ) ) |
| 40 |
39
|
oveq2d |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( G tsums ( F oF ( -g ` G ) F ) ) = ( G tsums ( k e. A |-> ( 0g ` G ) ) ) ) |
| 41 |
8 19
|
syl |
|- ( ( ph /\ x e. ( G tsums F ) ) -> G e. TopSp ) |
| 42 |
1 11
|
grpidcl |
|- ( G e. Grp -> ( 0g ` G ) e. B ) |
| 43 |
10 42
|
syl |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( 0g ` G ) e. B ) |
| 44 |
43
|
adantr |
|- ( ( ( ph /\ x e. ( G tsums F ) ) /\ k e. A ) -> ( 0g ` G ) e. B ) |
| 45 |
44
|
fmpttd |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( k e. A |-> ( 0g ` G ) ) : A --> B ) |
| 46 |
|
fconstmpt |
|- ( A X. { ( 0g ` G ) } ) = ( k e. A |-> ( 0g ` G ) ) |
| 47 |
|
fvexd |
|- ( ph -> ( 0g ` G ) e. _V ) |
| 48 |
5 47
|
fczfsuppd |
|- ( ph -> ( A X. { ( 0g ` G ) } ) finSupp ( 0g ` G ) ) |
| 49 |
48
|
adantr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( A X. { ( 0g ` G ) } ) finSupp ( 0g ` G ) ) |
| 50 |
46 49
|
eqbrtrrid |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( k e. A |-> ( 0g ` G ) ) finSupp ( 0g ` G ) ) |
| 51 |
1 11 26 41 27 45 50 2
|
tsmsgsum |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( G tsums ( k e. A |-> ( 0g ` G ) ) ) = ( ( cls ` J ) ` { ( G gsum ( k e. A |-> ( 0g ` G ) ) ) } ) ) |
| 52 |
|
cmnmnd |
|- ( G e. CMnd -> G e. Mnd ) |
| 53 |
26 52
|
syl |
|- ( ( ph /\ x e. ( G tsums F ) ) -> G e. Mnd ) |
| 54 |
11
|
gsumz |
|- ( ( G e. Mnd /\ A e. V ) -> ( G gsum ( k e. A |-> ( 0g ` G ) ) ) = ( 0g ` G ) ) |
| 55 |
53 27 54
|
syl2anc |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( G gsum ( k e. A |-> ( 0g ` G ) ) ) = ( 0g ` G ) ) |
| 56 |
55
|
sneqd |
|- ( ( ph /\ x e. ( G tsums F ) ) -> { ( G gsum ( k e. A |-> ( 0g ` G ) ) ) } = { ( 0g ` G ) } ) |
| 57 |
56
|
fveq2d |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( ( cls ` J ) ` { ( G gsum ( k e. A |-> ( 0g ` G ) ) ) } ) = ( ( cls ` J ) ` { ( 0g ` G ) } ) ) |
| 58 |
40 51 57
|
3eqtrd |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( G tsums ( F oF ( -g ` G ) F ) ) = ( ( cls ` J ) ` { ( 0g ` G ) } ) ) |
| 59 |
31 58
|
eleqtrd |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( X ( -g ` G ) x ) e. ( ( cls ` J ) ` { ( 0g ` G ) } ) ) |
| 60 |
|
isabl |
|- ( G e. Abel <-> ( G e. Grp /\ G e. CMnd ) ) |
| 61 |
10 26 60
|
sylanbrc |
|- ( ( ph /\ x e. ( G tsums F ) ) -> G e. Abel ) |
| 62 |
1
|
subgss |
|- ( ( ( cls ` J ) ` { ( 0g ` G ) } ) e. ( SubGrp ` G ) -> ( ( cls ` J ) ` { ( 0g ` G ) } ) C_ B ) |
| 63 |
15 62
|
syl |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( ( cls ` J ) ` { ( 0g ` G ) } ) C_ B ) |
| 64 |
1 25 16
|
eqgabl |
|- ( ( G e. Abel /\ ( ( cls ` J ) ` { ( 0g ` G ) } ) C_ B ) -> ( x ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) X <-> ( x e. B /\ X e. B /\ ( X ( -g ` G ) x ) e. ( ( cls ` J ) ` { ( 0g ` G ) } ) ) ) ) |
| 65 |
61 63 64
|
syl2anc |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( x ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) X <-> ( x e. B /\ X e. B /\ ( X ( -g ` G ) x ) e. ( ( cls ` J ) ` { ( 0g ` G ) } ) ) ) ) |
| 66 |
22 24 59 65
|
mpbir3and |
|- ( ( ph /\ x e. ( G tsums F ) ) -> x ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) X ) |
| 67 |
18 66
|
ersym |
|- ( ( ph /\ x e. ( G tsums F ) ) -> X ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) x ) |
| 68 |
16
|
releqg |
|- Rel ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) |
| 69 |
|
relelec |
|- ( Rel ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) -> ( x e. [ X ] ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) <-> X ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) x ) ) |
| 70 |
68 69
|
ax-mp |
|- ( x e. [ X ] ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) <-> X ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) x ) |
| 71 |
67 70
|
sylibr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> x e. [ X ] ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) ) |
| 72 |
|
eqid |
|- ( ( cls ` J ) ` { ( 0g ` G ) } ) = ( ( cls ` J ) ` { ( 0g ` G ) } ) |
| 73 |
1 2 11 16 72
|
snclseqg |
|- ( ( G e. TopGrp /\ X e. B ) -> [ X ] ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) = ( ( cls ` J ) ` { X } ) ) |
| 74 |
8 24 73
|
syl2anc |
|- ( ( ph /\ x e. ( G tsums F ) ) -> [ X ] ( G ~QG ( ( cls ` J ) ` { ( 0g ` G ) } ) ) = ( ( cls ` J ) ` { X } ) ) |
| 75 |
71 74
|
eleqtrd |
|- ( ( ph /\ x e. ( G tsums F ) ) -> x e. ( ( cls ` J ) ` { X } ) ) |
| 76 |
75
|
ex |
|- ( ph -> ( x e. ( G tsums F ) -> x e. ( ( cls ` J ) ` { X } ) ) ) |
| 77 |
76
|
ssrdv |
|- ( ph -> ( G tsums F ) C_ ( ( cls ` J ) ` { X } ) ) |
| 78 |
1 2 3 20 5 6 7
|
tsmscls |
|- ( ph -> ( ( cls ` J ) ` { X } ) C_ ( G tsums F ) ) |
| 79 |
77 78
|
eqssd |
|- ( ph -> ( G tsums F ) = ( ( cls ` J ) ` { X } ) ) |