| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgptsmscls.b |
|- B = ( Base ` G ) |
| 2 |
|
tgptsmscls.j |
|- J = ( TopOpen ` G ) |
| 3 |
|
tgptsmscls.1 |
|- ( ph -> G e. CMnd ) |
| 4 |
|
tgptsmscls.2 |
|- ( ph -> G e. TopGrp ) |
| 5 |
|
tgptsmscls.a |
|- ( ph -> A e. V ) |
| 6 |
|
tgptsmscls.f |
|- ( ph -> F : A --> B ) |
| 7 |
2 1
|
tgptopon |
|- ( G e. TopGrp -> J e. ( TopOn ` B ) ) |
| 8 |
4 7
|
syl |
|- ( ph -> J e. ( TopOn ` B ) ) |
| 9 |
|
topontop |
|- ( J e. ( TopOn ` B ) -> J e. Top ) |
| 10 |
8 9
|
syl |
|- ( ph -> J e. Top ) |
| 11 |
|
0cld |
|- ( J e. Top -> (/) e. ( Clsd ` J ) ) |
| 12 |
10 11
|
syl |
|- ( ph -> (/) e. ( Clsd ` J ) ) |
| 13 |
|
eleq1 |
|- ( ( G tsums F ) = (/) -> ( ( G tsums F ) e. ( Clsd ` J ) <-> (/) e. ( Clsd ` J ) ) ) |
| 14 |
12 13
|
syl5ibrcom |
|- ( ph -> ( ( G tsums F ) = (/) -> ( G tsums F ) e. ( Clsd ` J ) ) ) |
| 15 |
|
n0 |
|- ( ( G tsums F ) =/= (/) <-> E. x x e. ( G tsums F ) ) |
| 16 |
3
|
adantr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> G e. CMnd ) |
| 17 |
4
|
adantr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> G e. TopGrp ) |
| 18 |
5
|
adantr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> A e. V ) |
| 19 |
6
|
adantr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> F : A --> B ) |
| 20 |
|
simpr |
|- ( ( ph /\ x e. ( G tsums F ) ) -> x e. ( G tsums F ) ) |
| 21 |
1 2 16 17 18 19 20
|
tgptsmscls |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( G tsums F ) = ( ( cls ` J ) ` { x } ) ) |
| 22 |
|
tgptps |
|- ( G e. TopGrp -> G e. TopSp ) |
| 23 |
4 22
|
syl |
|- ( ph -> G e. TopSp ) |
| 24 |
1 3 23 5 6
|
tsmscl |
|- ( ph -> ( G tsums F ) C_ B ) |
| 25 |
|
toponuni |
|- ( J e. ( TopOn ` B ) -> B = U. J ) |
| 26 |
8 25
|
syl |
|- ( ph -> B = U. J ) |
| 27 |
24 26
|
sseqtrd |
|- ( ph -> ( G tsums F ) C_ U. J ) |
| 28 |
27
|
sselda |
|- ( ( ph /\ x e. ( G tsums F ) ) -> x e. U. J ) |
| 29 |
28
|
snssd |
|- ( ( ph /\ x e. ( G tsums F ) ) -> { x } C_ U. J ) |
| 30 |
|
eqid |
|- U. J = U. J |
| 31 |
30
|
clscld |
|- ( ( J e. Top /\ { x } C_ U. J ) -> ( ( cls ` J ) ` { x } ) e. ( Clsd ` J ) ) |
| 32 |
10 29 31
|
syl2an2r |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( ( cls ` J ) ` { x } ) e. ( Clsd ` J ) ) |
| 33 |
21 32
|
eqeltrd |
|- ( ( ph /\ x e. ( G tsums F ) ) -> ( G tsums F ) e. ( Clsd ` J ) ) |
| 34 |
33
|
ex |
|- ( ph -> ( x e. ( G tsums F ) -> ( G tsums F ) e. ( Clsd ` J ) ) ) |
| 35 |
34
|
exlimdv |
|- ( ph -> ( E. x x e. ( G tsums F ) -> ( G tsums F ) e. ( Clsd ` J ) ) ) |
| 36 |
15 35
|
biimtrid |
|- ( ph -> ( ( G tsums F ) =/= (/) -> ( G tsums F ) e. ( Clsd ` J ) ) ) |
| 37 |
14 36
|
pm2.61dne |
|- ( ph -> ( G tsums F ) e. ( Clsd ` J ) ) |