Description: A Tseitin axiom for logical incompatibility, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | tsna2 | |- ( th -> ( ph \/ ( ph -/\ ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tsan2 | |- ( th -> ( ph \/ -. ( ph /\ ps ) ) ) |
|
2 | df-nan | |- ( ( ph -/\ ps ) <-> -. ( ph /\ ps ) ) |
|
3 | 2 | orbi2i | |- ( ( ph \/ ( ph -/\ ps ) ) <-> ( ph \/ -. ( ph /\ ps ) ) ) |
4 | 1 3 | sylibr | |- ( th -> ( ph \/ ( ph -/\ ps ) ) ) |