Metamath Proof Explorer


Theorem tsna2

Description: A Tseitin axiom for logical incompatibility, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018)

Ref Expression
Assertion tsna2 ( 𝜃 → ( 𝜑 ∨ ( 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 tsan2 ( 𝜃 → ( 𝜑 ∨ ¬ ( 𝜑𝜓 ) ) )
2 df-nan ( ( 𝜑𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )
3 2 orbi2i ( ( 𝜑 ∨ ( 𝜑𝜓 ) ) ↔ ( 𝜑 ∨ ¬ ( 𝜑𝜓 ) ) )
4 1 3 sylibr ( 𝜃 → ( 𝜑 ∨ ( 𝜑𝜓 ) ) )