| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ttukeylem.1 |
|- ( ph -> F : ( card ` ( U. A \ B ) ) -1-1-onto-> ( U. A \ B ) ) |
| 2 |
|
ttukeylem.2 |
|- ( ph -> B e. A ) |
| 3 |
|
ttukeylem.3 |
|- ( ph -> A. x ( x e. A <-> ( ~P x i^i Fin ) C_ A ) ) |
| 4 |
|
simpr |
|- ( ( ph /\ D C_ C ) -> D C_ C ) |
| 5 |
4
|
sspwd |
|- ( ( ph /\ D C_ C ) -> ~P D C_ ~P C ) |
| 6 |
|
ssrin |
|- ( ~P D C_ ~P C -> ( ~P D i^i Fin ) C_ ( ~P C i^i Fin ) ) |
| 7 |
|
sstr2 |
|- ( ( ~P D i^i Fin ) C_ ( ~P C i^i Fin ) -> ( ( ~P C i^i Fin ) C_ A -> ( ~P D i^i Fin ) C_ A ) ) |
| 8 |
5 6 7
|
3syl |
|- ( ( ph /\ D C_ C ) -> ( ( ~P C i^i Fin ) C_ A -> ( ~P D i^i Fin ) C_ A ) ) |
| 9 |
1 2 3
|
ttukeylem1 |
|- ( ph -> ( C e. A <-> ( ~P C i^i Fin ) C_ A ) ) |
| 10 |
9
|
adantr |
|- ( ( ph /\ D C_ C ) -> ( C e. A <-> ( ~P C i^i Fin ) C_ A ) ) |
| 11 |
1 2 3
|
ttukeylem1 |
|- ( ph -> ( D e. A <-> ( ~P D i^i Fin ) C_ A ) ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ D C_ C ) -> ( D e. A <-> ( ~P D i^i Fin ) C_ A ) ) |
| 13 |
8 10 12
|
3imtr4d |
|- ( ( ph /\ D C_ C ) -> ( C e. A -> D e. A ) ) |
| 14 |
13
|
impancom |
|- ( ( ph /\ C e. A ) -> ( D C_ C -> D e. A ) ) |
| 15 |
14
|
impr |
|- ( ( ph /\ ( C e. A /\ D C_ C ) ) -> D e. A ) |