Step |
Hyp |
Ref |
Expression |
1 |
|
ttukeylem.1 |
|- ( ph -> F : ( card ` ( U. A \ B ) ) -1-1-onto-> ( U. A \ B ) ) |
2 |
|
ttukeylem.2 |
|- ( ph -> B e. A ) |
3 |
|
ttukeylem.3 |
|- ( ph -> A. x ( x e. A <-> ( ~P x i^i Fin ) C_ A ) ) |
4 |
|
simpr |
|- ( ( ph /\ D C_ C ) -> D C_ C ) |
5 |
4
|
sspwd |
|- ( ( ph /\ D C_ C ) -> ~P D C_ ~P C ) |
6 |
|
ssrin |
|- ( ~P D C_ ~P C -> ( ~P D i^i Fin ) C_ ( ~P C i^i Fin ) ) |
7 |
|
sstr2 |
|- ( ( ~P D i^i Fin ) C_ ( ~P C i^i Fin ) -> ( ( ~P C i^i Fin ) C_ A -> ( ~P D i^i Fin ) C_ A ) ) |
8 |
5 6 7
|
3syl |
|- ( ( ph /\ D C_ C ) -> ( ( ~P C i^i Fin ) C_ A -> ( ~P D i^i Fin ) C_ A ) ) |
9 |
1 2 3
|
ttukeylem1 |
|- ( ph -> ( C e. A <-> ( ~P C i^i Fin ) C_ A ) ) |
10 |
9
|
adantr |
|- ( ( ph /\ D C_ C ) -> ( C e. A <-> ( ~P C i^i Fin ) C_ A ) ) |
11 |
1 2 3
|
ttukeylem1 |
|- ( ph -> ( D e. A <-> ( ~P D i^i Fin ) C_ A ) ) |
12 |
11
|
adantr |
|- ( ( ph /\ D C_ C ) -> ( D e. A <-> ( ~P D i^i Fin ) C_ A ) ) |
13 |
8 10 12
|
3imtr4d |
|- ( ( ph /\ D C_ C ) -> ( C e. A -> D e. A ) ) |
14 |
13
|
impancom |
|- ( ( ph /\ C e. A ) -> ( D C_ C -> D e. A ) ) |
15 |
14
|
impr |
|- ( ( ph /\ ( C e. A /\ D C_ C ) ) -> D e. A ) |