Description: A nonzero unique factorization domain is an integral domain. (Contributed by Thierry Arnoux, 3-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ufdidom.2 | |- ( ph -> R e. UFD ) |
|
| Assertion | ufdidom | |- ( ph -> R e. IDomn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ufdidom.2 | |- ( ph -> R e. UFD ) |
|
| 2 | eqid | |- ( PrmIdeal ` R ) = ( PrmIdeal ` R ) |
|
| 3 | eqid | |- ( RPrime ` R ) = ( RPrime ` R ) |
|
| 4 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 5 | 2 3 4 | isufd | |- ( R e. UFD <-> ( R e. IDomn /\ A. i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ( i i^i ( RPrime ` R ) ) =/= (/) ) ) |
| 6 | 5 | simplbi | |- ( R e. UFD -> R e. IDomn ) |
| 7 | 1 6 | syl | |- ( ph -> R e. IDomn ) |