Metamath Proof Explorer


Theorem ufdidom

Description: A nonzero unique factorization domain is an integral domain. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypothesis ufdidom.2
|- ( ph -> R e. UFD )
Assertion ufdidom
|- ( ph -> R e. IDomn )

Proof

Step Hyp Ref Expression
1 ufdidom.2
 |-  ( ph -> R e. UFD )
2 eqid
 |-  ( PrmIdeal ` R ) = ( PrmIdeal ` R )
3 eqid
 |-  ( RPrime ` R ) = ( RPrime ` R )
4 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
5 2 3 4 isufd
 |-  ( R e. UFD <-> ( R e. IDomn /\ A. i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ( i i^i ( RPrime ` R ) ) =/= (/) ) )
6 5 simplbi
 |-  ( R e. UFD -> R e. IDomn )
7 1 6 syl
 |-  ( ph -> R e. IDomn )