Metamath Proof Explorer


Theorem ufdidom

Description: A nonzero unique factorization domain is an integral domain. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypothesis ufdidom.2 ( 𝜑𝑅 ∈ UFD )
Assertion ufdidom ( 𝜑𝑅 ∈ IDomn )

Proof

Step Hyp Ref Expression
1 ufdidom.2 ( 𝜑𝑅 ∈ UFD )
2 eqid ( PrmIdeal ‘ 𝑅 ) = ( PrmIdeal ‘ 𝑅 )
3 eqid ( RPrime ‘ 𝑅 ) = ( RPrime ‘ 𝑅 )
4 eqid ( 0g𝑅 ) = ( 0g𝑅 )
5 2 3 4 isufd ( 𝑅 ∈ UFD ↔ ( 𝑅 ∈ IDomn ∧ ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g𝑅 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑅 ) ) ≠ ∅ ) )
6 5 simplbi ( 𝑅 ∈ UFD → 𝑅 ∈ IDomn )
7 1 6 syl ( 𝜑𝑅 ∈ IDomn )