Description: A nonzero unique factorization domain is an integral domain. (Contributed by Thierry Arnoux, 3-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ufdidom.2 | ⊢ ( 𝜑 → 𝑅 ∈ UFD ) | |
| Assertion | ufdidom | ⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ufdidom.2 | ⊢ ( 𝜑 → 𝑅 ∈ UFD ) | |
| 2 | eqid | ⊢ ( PrmIdeal ‘ 𝑅 ) = ( PrmIdeal ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( RPrime ‘ 𝑅 ) = ( RPrime ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 5 | 2 3 4 | isufd | ⊢ ( 𝑅 ∈ UFD ↔ ( 𝑅 ∈ IDomn ∧ ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑅 ) ) ≠ ∅ ) ) |
| 6 | 5 | simplbi | ⊢ ( 𝑅 ∈ UFD → 𝑅 ∈ IDomn ) |
| 7 | 1 6 | syl | ⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |