Description: A nonzero unique factorization domain is an integral domain. (Contributed by Thierry Arnoux, 3-Jun-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ufdidom.2 | ⊢ ( 𝜑 → 𝑅 ∈ UFD ) | |
Assertion | ufdidom | ⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ufdidom.2 | ⊢ ( 𝜑 → 𝑅 ∈ UFD ) | |
2 | eqid | ⊢ ( PrmIdeal ‘ 𝑅 ) = ( PrmIdeal ‘ 𝑅 ) | |
3 | eqid | ⊢ ( RPrime ‘ 𝑅 ) = ( RPrime ‘ 𝑅 ) | |
4 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
5 | 2 3 4 | isufd | ⊢ ( 𝑅 ∈ UFD ↔ ( 𝑅 ∈ IDomn ∧ ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑅 ) ) ≠ ∅ ) ) |
6 | 5 | simplbi | ⊢ ( 𝑅 ∈ UFD → 𝑅 ∈ IDomn ) |
7 | 1 6 | syl | ⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |