Step |
Hyp |
Ref |
Expression |
1 |
|
pidufd.1 |
⊢ ( 𝜑 → 𝑅 ∈ PID ) |
2 |
|
df-pid |
⊢ PID = ( IDomn ∩ LPIR ) |
3 |
1 2
|
eleqtrdi |
⊢ ( 𝜑 → 𝑅 ∈ ( IDomn ∩ LPIR ) ) |
4 |
3
|
elin1d |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
5 |
4
|
idomringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
6 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) → 𝑅 ∈ Ring ) |
7 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
9 |
|
eqid |
⊢ ( RSpan ‘ 𝑅 ) = ( RSpan ‘ 𝑅 ) |
10 |
8 9
|
rspsnid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑥 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) |
11 |
6 7 10
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) → 𝑥 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) |
12 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) → 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) |
13 |
11 12
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) → 𝑥 ∈ 𝑖 ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) → 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) |
15 |
14
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) → 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) |
16 |
15
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) → 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) |
17 |
12 16
|
eqeltrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ∈ ( PrmIdeal ‘ 𝑅 ) ) |
18 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
19 |
|
eqid |
⊢ ( RPrime ‘ 𝑅 ) = ( RPrime ‘ 𝑅 ) |
20 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) → 𝑅 ∈ IDomn ) |
21 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) |
22 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → 𝑥 = ( 0g ‘ 𝑅 ) ) |
23 |
22
|
sneqd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → { 𝑥 } = { ( 0g ‘ 𝑅 ) } ) |
24 |
23
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) = ( ( RSpan ‘ 𝑅 ) ‘ { ( 0g ‘ 𝑅 ) } ) ) |
25 |
9 18
|
rsp0 |
⊢ ( 𝑅 ∈ Ring → ( ( RSpan ‘ 𝑅 ) ‘ { ( 0g ‘ 𝑅 ) } ) = { ( 0g ‘ 𝑅 ) } ) |
26 |
5 25
|
syl |
⊢ ( 𝜑 → ( ( RSpan ‘ 𝑅 ) ‘ { ( 0g ‘ 𝑅 ) } ) = { ( 0g ‘ 𝑅 ) } ) |
27 |
26
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ( ( RSpan ‘ 𝑅 ) ‘ { ( 0g ‘ 𝑅 ) } ) = { ( 0g ‘ 𝑅 ) } ) |
28 |
21 24 27
|
3eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → 𝑖 = { ( 0g ‘ 𝑅 ) } ) |
29 |
|
eldifsni |
⊢ ( 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) → 𝑖 ≠ { ( 0g ‘ 𝑅 ) } ) |
30 |
29
|
ad4antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → 𝑖 ≠ { ( 0g ‘ 𝑅 ) } ) |
31 |
30
|
neneqd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) ∧ 𝑥 = ( 0g ‘ 𝑅 ) ) → ¬ 𝑖 = { ( 0g ‘ 𝑅 ) } ) |
32 |
28 31
|
pm2.65da |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) → ¬ 𝑥 = ( 0g ‘ 𝑅 ) ) |
33 |
32
|
neqned |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) → 𝑥 ≠ ( 0g ‘ 𝑅 ) ) |
34 |
18 8 19 9 20 7 33
|
rsprprmprmidlb |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) → ( 𝑥 ∈ ( RPrime ‘ 𝑅 ) ↔ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ∈ ( PrmIdeal ‘ 𝑅 ) ) ) |
35 |
17 34
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) → 𝑥 ∈ ( RPrime ‘ 𝑅 ) ) |
36 |
13 35
|
elind |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) → 𝑥 ∈ ( 𝑖 ∩ ( RPrime ‘ 𝑅 ) ) ) |
37 |
36
|
ne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) → ( 𝑖 ∩ ( RPrime ‘ 𝑅 ) ) ≠ ∅ ) |
38 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
39 |
3
|
elin2d |
⊢ ( 𝜑 → 𝑅 ∈ LPIR ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) → 𝑅 ∈ LPIR ) |
41 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) → 𝑅 ∈ Ring ) |
42 |
|
prmidlidl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) → 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) |
43 |
41 15 42
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) → 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) |
44 |
8 38 9 40 43
|
lpirlidllpi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) → ∃ 𝑥 ∈ ( Base ‘ 𝑅 ) 𝑖 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) |
45 |
37 44
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ) → ( 𝑖 ∩ ( RPrime ‘ 𝑅 ) ) ≠ ∅ ) |
46 |
45
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑅 ) ) ≠ ∅ ) |
47 |
|
eqid |
⊢ ( PrmIdeal ‘ 𝑅 ) = ( PrmIdeal ‘ 𝑅 ) |
48 |
47 19 18
|
isufd |
⊢ ( 𝑅 ∈ UFD ↔ ( 𝑅 ∈ IDomn ∧ ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { ( 0g ‘ 𝑅 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑅 ) ) ≠ ∅ ) ) |
49 |
4 46 48
|
sylanbrc |
⊢ ( 𝜑 → 𝑅 ∈ UFD ) |