Step |
Hyp |
Ref |
Expression |
1 |
|
lpirlidllpi.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
lpirlidllpi.2 |
⊢ 𝐼 = ( LIdeal ‘ 𝑅 ) |
3 |
|
lpirlidllpi.3 |
⊢ 𝐾 = ( RSpan ‘ 𝑅 ) |
4 |
|
lpirlidllpi.4 |
⊢ ( 𝜑 → 𝑅 ∈ LPIR ) |
5 |
|
lpirlidllpi.5 |
⊢ ( 𝜑 → 𝐽 ∈ 𝐼 ) |
6 |
|
eqid |
⊢ ( LPIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) |
7 |
6 2
|
islpir |
⊢ ( 𝑅 ∈ LPIR ↔ ( 𝑅 ∈ Ring ∧ 𝐼 = ( LPIdeal ‘ 𝑅 ) ) ) |
8 |
4 7
|
sylib |
⊢ ( 𝜑 → ( 𝑅 ∈ Ring ∧ 𝐼 = ( LPIdeal ‘ 𝑅 ) ) ) |
9 |
8
|
simpld |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
10 |
8
|
simprd |
⊢ ( 𝜑 → 𝐼 = ( LPIdeal ‘ 𝑅 ) ) |
11 |
5 10
|
eleqtrd |
⊢ ( 𝜑 → 𝐽 ∈ ( LPIdeal ‘ 𝑅 ) ) |
12 |
6 3 1
|
islpidl |
⊢ ( 𝑅 ∈ Ring → ( 𝐽 ∈ ( LPIdeal ‘ 𝑅 ) ↔ ∃ 𝑥 ∈ 𝐵 𝐽 = ( 𝐾 ‘ { 𝑥 } ) ) ) |
13 |
12
|
biimpa |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐽 ∈ ( LPIdeal ‘ 𝑅 ) ) → ∃ 𝑥 ∈ 𝐵 𝐽 = ( 𝐾 ‘ { 𝑥 } ) ) |
14 |
9 11 13
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 𝐽 = ( 𝐾 ‘ { 𝑥 } ) ) |