Metamath Proof Explorer


Theorem lpirlidllpi

Description: In a principal ideal ring, ideals are principal. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses lpirlidllpi.1 𝐵 = ( Base ‘ 𝑅 )
lpirlidllpi.2 𝐼 = ( LIdeal ‘ 𝑅 )
lpirlidllpi.3 𝐾 = ( RSpan ‘ 𝑅 )
lpirlidllpi.4 ( 𝜑𝑅 ∈ LPIR )
lpirlidllpi.5 ( 𝜑𝐽𝐼 )
Assertion lpirlidllpi ( 𝜑 → ∃ 𝑥𝐵 𝐽 = ( 𝐾 ‘ { 𝑥 } ) )

Proof

Step Hyp Ref Expression
1 lpirlidllpi.1 𝐵 = ( Base ‘ 𝑅 )
2 lpirlidllpi.2 𝐼 = ( LIdeal ‘ 𝑅 )
3 lpirlidllpi.3 𝐾 = ( RSpan ‘ 𝑅 )
4 lpirlidllpi.4 ( 𝜑𝑅 ∈ LPIR )
5 lpirlidllpi.5 ( 𝜑𝐽𝐼 )
6 eqid ( LPIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 )
7 6 2 islpir ( 𝑅 ∈ LPIR ↔ ( 𝑅 ∈ Ring ∧ 𝐼 = ( LPIdeal ‘ 𝑅 ) ) )
8 4 7 sylib ( 𝜑 → ( 𝑅 ∈ Ring ∧ 𝐼 = ( LPIdeal ‘ 𝑅 ) ) )
9 8 simpld ( 𝜑𝑅 ∈ Ring )
10 8 simprd ( 𝜑𝐼 = ( LPIdeal ‘ 𝑅 ) )
11 5 10 eleqtrd ( 𝜑𝐽 ∈ ( LPIdeal ‘ 𝑅 ) )
12 6 3 1 islpidl ( 𝑅 ∈ Ring → ( 𝐽 ∈ ( LPIdeal ‘ 𝑅 ) ↔ ∃ 𝑥𝐵 𝐽 = ( 𝐾 ‘ { 𝑥 } ) ) )
13 12 biimpa ( ( 𝑅 ∈ Ring ∧ 𝐽 ∈ ( LPIdeal ‘ 𝑅 ) ) → ∃ 𝑥𝐵 𝐽 = ( 𝐾 ‘ { 𝑥 } ) )
14 9 11 13 syl2anc ( 𝜑 → ∃ 𝑥𝐵 𝐽 = ( 𝐾 ‘ { 𝑥 } ) )