Step |
Hyp |
Ref |
Expression |
1 |
|
lpirlidllpi.1 |
|- B = ( Base ` R ) |
2 |
|
lpirlidllpi.2 |
|- I = ( LIdeal ` R ) |
3 |
|
lpirlidllpi.3 |
|- K = ( RSpan ` R ) |
4 |
|
lpirlidllpi.4 |
|- ( ph -> R e. LPIR ) |
5 |
|
lpirlidllpi.5 |
|- ( ph -> J e. I ) |
6 |
|
eqid |
|- ( LPIdeal ` R ) = ( LPIdeal ` R ) |
7 |
6 2
|
islpir |
|- ( R e. LPIR <-> ( R e. Ring /\ I = ( LPIdeal ` R ) ) ) |
8 |
4 7
|
sylib |
|- ( ph -> ( R e. Ring /\ I = ( LPIdeal ` R ) ) ) |
9 |
8
|
simpld |
|- ( ph -> R e. Ring ) |
10 |
8
|
simprd |
|- ( ph -> I = ( LPIdeal ` R ) ) |
11 |
5 10
|
eleqtrd |
|- ( ph -> J e. ( LPIdeal ` R ) ) |
12 |
6 3 1
|
islpidl |
|- ( R e. Ring -> ( J e. ( LPIdeal ` R ) <-> E. x e. B J = ( K ` { x } ) ) ) |
13 |
12
|
biimpa |
|- ( ( R e. Ring /\ J e. ( LPIdeal ` R ) ) -> E. x e. B J = ( K ` { x } ) ) |
14 |
9 11 13
|
syl2anc |
|- ( ph -> E. x e. B J = ( K ` { x } ) ) |