Metamath Proof Explorer


Theorem lpirlidllpi

Description: In a principal ideal ring, ideals are principal. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses lpirlidllpi.1 B = Base R
lpirlidllpi.2 I = LIdeal R
lpirlidllpi.3 K = RSpan R
lpirlidllpi.4 φ R LPIR
lpirlidllpi.5 φ J I
Assertion lpirlidllpi φ x B J = K x

Proof

Step Hyp Ref Expression
1 lpirlidllpi.1 B = Base R
2 lpirlidllpi.2 I = LIdeal R
3 lpirlidllpi.3 K = RSpan R
4 lpirlidllpi.4 φ R LPIR
5 lpirlidllpi.5 φ J I
6 eqid LPIdeal R = LPIdeal R
7 6 2 islpir R LPIR R Ring I = LPIdeal R
8 4 7 sylib φ R Ring I = LPIdeal R
9 8 simpld φ R Ring
10 8 simprd φ I = LPIdeal R
11 5 10 eleqtrd φ J LPIdeal R
12 6 3 1 islpidl R Ring J LPIdeal R x B J = K x
13 12 biimpa R Ring J LPIdeal R x B J = K x
14 9 11 13 syl2anc φ x B J = K x