Step |
Hyp |
Ref |
Expression |
1 |
|
pidufd.1 |
|- ( ph -> R e. PID ) |
2 |
|
df-pid |
|- PID = ( IDomn i^i LPIR ) |
3 |
1 2
|
eleqtrdi |
|- ( ph -> R e. ( IDomn i^i LPIR ) ) |
4 |
3
|
elin1d |
|- ( ph -> R e. IDomn ) |
5 |
4
|
idomringd |
|- ( ph -> R e. Ring ) |
6 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> R e. Ring ) |
7 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> x e. ( Base ` R ) ) |
8 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
9 |
|
eqid |
|- ( RSpan ` R ) = ( RSpan ` R ) |
10 |
8 9
|
rspsnid |
|- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> x e. ( ( RSpan ` R ) ` { x } ) ) |
11 |
6 7 10
|
syl2anc |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> x e. ( ( RSpan ` R ) ` { x } ) ) |
12 |
|
simpr |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> i = ( ( RSpan ` R ) ` { x } ) ) |
13 |
11 12
|
eleqtrrd |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> x e. i ) |
14 |
|
simpr |
|- ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) -> i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) |
15 |
14
|
eldifad |
|- ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) -> i e. ( PrmIdeal ` R ) ) |
16 |
15
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> i e. ( PrmIdeal ` R ) ) |
17 |
12 16
|
eqeltrrd |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> ( ( RSpan ` R ) ` { x } ) e. ( PrmIdeal ` R ) ) |
18 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
19 |
|
eqid |
|- ( RPrime ` R ) = ( RPrime ` R ) |
20 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> R e. IDomn ) |
21 |
|
simplr |
|- ( ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) /\ x = ( 0g ` R ) ) -> i = ( ( RSpan ` R ) ` { x } ) ) |
22 |
|
simpr |
|- ( ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) /\ x = ( 0g ` R ) ) -> x = ( 0g ` R ) ) |
23 |
22
|
sneqd |
|- ( ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) /\ x = ( 0g ` R ) ) -> { x } = { ( 0g ` R ) } ) |
24 |
23
|
fveq2d |
|- ( ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) /\ x = ( 0g ` R ) ) -> ( ( RSpan ` R ) ` { x } ) = ( ( RSpan ` R ) ` { ( 0g ` R ) } ) ) |
25 |
9 18
|
rsp0 |
|- ( R e. Ring -> ( ( RSpan ` R ) ` { ( 0g ` R ) } ) = { ( 0g ` R ) } ) |
26 |
5 25
|
syl |
|- ( ph -> ( ( RSpan ` R ) ` { ( 0g ` R ) } ) = { ( 0g ` R ) } ) |
27 |
26
|
ad4antr |
|- ( ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) /\ x = ( 0g ` R ) ) -> ( ( RSpan ` R ) ` { ( 0g ` R ) } ) = { ( 0g ` R ) } ) |
28 |
21 24 27
|
3eqtrd |
|- ( ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) /\ x = ( 0g ` R ) ) -> i = { ( 0g ` R ) } ) |
29 |
|
eldifsni |
|- ( i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) -> i =/= { ( 0g ` R ) } ) |
30 |
29
|
ad4antlr |
|- ( ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) /\ x = ( 0g ` R ) ) -> i =/= { ( 0g ` R ) } ) |
31 |
30
|
neneqd |
|- ( ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) /\ x = ( 0g ` R ) ) -> -. i = { ( 0g ` R ) } ) |
32 |
28 31
|
pm2.65da |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> -. x = ( 0g ` R ) ) |
33 |
32
|
neqned |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> x =/= ( 0g ` R ) ) |
34 |
18 8 19 9 20 7 33
|
rsprprmprmidlb |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> ( x e. ( RPrime ` R ) <-> ( ( RSpan ` R ) ` { x } ) e. ( PrmIdeal ` R ) ) ) |
35 |
17 34
|
mpbird |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> x e. ( RPrime ` R ) ) |
36 |
13 35
|
elind |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> x e. ( i i^i ( RPrime ` R ) ) ) |
37 |
36
|
ne0d |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> ( i i^i ( RPrime ` R ) ) =/= (/) ) |
38 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
39 |
3
|
elin2d |
|- ( ph -> R e. LPIR ) |
40 |
39
|
adantr |
|- ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) -> R e. LPIR ) |
41 |
5
|
adantr |
|- ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) -> R e. Ring ) |
42 |
|
prmidlidl |
|- ( ( R e. Ring /\ i e. ( PrmIdeal ` R ) ) -> i e. ( LIdeal ` R ) ) |
43 |
41 15 42
|
syl2anc |
|- ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) -> i e. ( LIdeal ` R ) ) |
44 |
8 38 9 40 43
|
lpirlidllpi |
|- ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) -> E. x e. ( Base ` R ) i = ( ( RSpan ` R ) ` { x } ) ) |
45 |
37 44
|
r19.29a |
|- ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) -> ( i i^i ( RPrime ` R ) ) =/= (/) ) |
46 |
45
|
ralrimiva |
|- ( ph -> A. i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ( i i^i ( RPrime ` R ) ) =/= (/) ) |
47 |
|
eqid |
|- ( PrmIdeal ` R ) = ( PrmIdeal ` R ) |
48 |
47 19 18
|
isufd |
|- ( R e. UFD <-> ( R e. IDomn /\ A. i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ( i i^i ( RPrime ` R ) ) =/= (/) ) ) |
49 |
4 46 48
|
sylanbrc |
|- ( ph -> R e. UFD ) |