| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pidufd.1 |
|- ( ph -> R e. PID ) |
| 2 |
|
df-pid |
|- PID = ( IDomn i^i LPIR ) |
| 3 |
1 2
|
eleqtrdi |
|- ( ph -> R e. ( IDomn i^i LPIR ) ) |
| 4 |
3
|
elin1d |
|- ( ph -> R e. IDomn ) |
| 5 |
4
|
idomringd |
|- ( ph -> R e. Ring ) |
| 6 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> R e. Ring ) |
| 7 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> x e. ( Base ` R ) ) |
| 8 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 9 |
|
eqid |
|- ( RSpan ` R ) = ( RSpan ` R ) |
| 10 |
8 9
|
rspsnid |
|- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> x e. ( ( RSpan ` R ) ` { x } ) ) |
| 11 |
6 7 10
|
syl2anc |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> x e. ( ( RSpan ` R ) ` { x } ) ) |
| 12 |
|
simpr |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> i = ( ( RSpan ` R ) ` { x } ) ) |
| 13 |
11 12
|
eleqtrrd |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> x e. i ) |
| 14 |
|
simpr |
|- ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) -> i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) |
| 15 |
14
|
eldifad |
|- ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) -> i e. ( PrmIdeal ` R ) ) |
| 16 |
15
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> i e. ( PrmIdeal ` R ) ) |
| 17 |
12 16
|
eqeltrrd |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> ( ( RSpan ` R ) ` { x } ) e. ( PrmIdeal ` R ) ) |
| 18 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 19 |
|
eqid |
|- ( RPrime ` R ) = ( RPrime ` R ) |
| 20 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> R e. IDomn ) |
| 21 |
|
simplr |
|- ( ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) /\ x = ( 0g ` R ) ) -> i = ( ( RSpan ` R ) ` { x } ) ) |
| 22 |
|
simpr |
|- ( ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) /\ x = ( 0g ` R ) ) -> x = ( 0g ` R ) ) |
| 23 |
22
|
sneqd |
|- ( ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) /\ x = ( 0g ` R ) ) -> { x } = { ( 0g ` R ) } ) |
| 24 |
23
|
fveq2d |
|- ( ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) /\ x = ( 0g ` R ) ) -> ( ( RSpan ` R ) ` { x } ) = ( ( RSpan ` R ) ` { ( 0g ` R ) } ) ) |
| 25 |
9 18
|
rsp0 |
|- ( R e. Ring -> ( ( RSpan ` R ) ` { ( 0g ` R ) } ) = { ( 0g ` R ) } ) |
| 26 |
5 25
|
syl |
|- ( ph -> ( ( RSpan ` R ) ` { ( 0g ` R ) } ) = { ( 0g ` R ) } ) |
| 27 |
26
|
ad4antr |
|- ( ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) /\ x = ( 0g ` R ) ) -> ( ( RSpan ` R ) ` { ( 0g ` R ) } ) = { ( 0g ` R ) } ) |
| 28 |
21 24 27
|
3eqtrd |
|- ( ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) /\ x = ( 0g ` R ) ) -> i = { ( 0g ` R ) } ) |
| 29 |
|
eldifsni |
|- ( i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) -> i =/= { ( 0g ` R ) } ) |
| 30 |
29
|
ad4antlr |
|- ( ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) /\ x = ( 0g ` R ) ) -> i =/= { ( 0g ` R ) } ) |
| 31 |
30
|
neneqd |
|- ( ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) /\ x = ( 0g ` R ) ) -> -. i = { ( 0g ` R ) } ) |
| 32 |
28 31
|
pm2.65da |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> -. x = ( 0g ` R ) ) |
| 33 |
32
|
neqned |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> x =/= ( 0g ` R ) ) |
| 34 |
18 8 19 9 20 7 33
|
rsprprmprmidlb |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> ( x e. ( RPrime ` R ) <-> ( ( RSpan ` R ) ` { x } ) e. ( PrmIdeal ` R ) ) ) |
| 35 |
17 34
|
mpbird |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> x e. ( RPrime ` R ) ) |
| 36 |
13 35
|
elind |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> x e. ( i i^i ( RPrime ` R ) ) ) |
| 37 |
36
|
ne0d |
|- ( ( ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) /\ x e. ( Base ` R ) ) /\ i = ( ( RSpan ` R ) ` { x } ) ) -> ( i i^i ( RPrime ` R ) ) =/= (/) ) |
| 38 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 39 |
3
|
elin2d |
|- ( ph -> R e. LPIR ) |
| 40 |
39
|
adantr |
|- ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) -> R e. LPIR ) |
| 41 |
5
|
adantr |
|- ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) -> R e. Ring ) |
| 42 |
|
prmidlidl |
|- ( ( R e. Ring /\ i e. ( PrmIdeal ` R ) ) -> i e. ( LIdeal ` R ) ) |
| 43 |
41 15 42
|
syl2anc |
|- ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) -> i e. ( LIdeal ` R ) ) |
| 44 |
8 38 9 40 43
|
lpirlidllpi |
|- ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) -> E. x e. ( Base ` R ) i = ( ( RSpan ` R ) ` { x } ) ) |
| 45 |
37 44
|
r19.29a |
|- ( ( ph /\ i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ) -> ( i i^i ( RPrime ` R ) ) =/= (/) ) |
| 46 |
45
|
ralrimiva |
|- ( ph -> A. i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ( i i^i ( RPrime ` R ) ) =/= (/) ) |
| 47 |
|
eqid |
|- ( PrmIdeal ` R ) = ( PrmIdeal ` R ) |
| 48 |
47 19 18
|
isufd |
|- ( R e. UFD <-> ( R e. IDomn /\ A. i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ( i i^i ( RPrime ` R ) ) =/= (/) ) ) |
| 49 |
4 46 48
|
sylanbrc |
|- ( ph -> R e. UFD ) |