Metamath Proof Explorer


Theorem isufd

Description: The property of being a Unique Factorization Domain. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses isufd.i
|- I = ( PrmIdeal ` R )
isufd.3
|- P = ( RPrime ` R )
isufd.0
|- .0. = ( 0g ` R )
Assertion isufd
|- ( R e. UFD <-> ( R e. IDomn /\ A. i e. ( I \ { { .0. } } ) ( i i^i P ) =/= (/) ) )

Proof

Step Hyp Ref Expression
1 isufd.i
 |-  I = ( PrmIdeal ` R )
2 isufd.3
 |-  P = ( RPrime ` R )
3 isufd.0
 |-  .0. = ( 0g ` R )
4 fveq2
 |-  ( r = R -> ( PrmIdeal ` r ) = ( PrmIdeal ` R ) )
5 4 1 eqtr4di
 |-  ( r = R -> ( PrmIdeal ` r ) = I )
6 fveq2
 |-  ( r = R -> ( 0g ` r ) = ( 0g ` R ) )
7 6 3 eqtr4di
 |-  ( r = R -> ( 0g ` r ) = .0. )
8 7 sneqd
 |-  ( r = R -> { ( 0g ` r ) } = { .0. } )
9 8 sneqd
 |-  ( r = R -> { { ( 0g ` r ) } } = { { .0. } } )
10 5 9 difeq12d
 |-  ( r = R -> ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) = ( I \ { { .0. } } ) )
11 fveq2
 |-  ( r = R -> ( RPrime ` r ) = ( RPrime ` R ) )
12 11 2 eqtr4di
 |-  ( r = R -> ( RPrime ` r ) = P )
13 12 ineq2d
 |-  ( r = R -> ( i i^i ( RPrime ` r ) ) = ( i i^i P ) )
14 13 neeq1d
 |-  ( r = R -> ( ( i i^i ( RPrime ` r ) ) =/= (/) <-> ( i i^i P ) =/= (/) ) )
15 10 14 raleqbidv
 |-  ( r = R -> ( A. i e. ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) ( i i^i ( RPrime ` r ) ) =/= (/) <-> A. i e. ( I \ { { .0. } } ) ( i i^i P ) =/= (/) ) )
16 df-ufd
 |-  UFD = { r e. IDomn | A. i e. ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) ( i i^i ( RPrime ` r ) ) =/= (/) }
17 15 16 elrab2
 |-  ( R e. UFD <-> ( R e. IDomn /\ A. i e. ( I \ { { .0. } } ) ( i i^i P ) =/= (/) ) )