Metamath Proof Explorer


Theorem isufd

Description: The property of being a Unique Factorization Domain. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses isufd.i I = PrmIdeal R
isufd.3 P = RPrime R
isufd.0 0 ˙ = 0 R
Assertion isufd R UFD R IDomn i I 0 ˙ i P

Proof

Step Hyp Ref Expression
1 isufd.i I = PrmIdeal R
2 isufd.3 P = RPrime R
3 isufd.0 0 ˙ = 0 R
4 fveq2 r = R PrmIdeal r = PrmIdeal R
5 4 1 eqtr4di r = R PrmIdeal r = I
6 fveq2 r = R 0 r = 0 R
7 6 3 eqtr4di r = R 0 r = 0 ˙
8 7 sneqd r = R 0 r = 0 ˙
9 8 sneqd r = R 0 r = 0 ˙
10 5 9 difeq12d r = R PrmIdeal r 0 r = I 0 ˙
11 fveq2 r = R RPrime r = RPrime R
12 11 2 eqtr4di r = R RPrime r = P
13 12 ineq2d r = R i RPrime r = i P
14 13 neeq1d r = R i RPrime r i P
15 10 14 raleqbidv r = R i PrmIdeal r 0 r i RPrime r i I 0 ˙ i P
16 df-ufd UFD = r IDomn | i PrmIdeal r 0 r i RPrime r
17 15 16 elrab2 R UFD R IDomn i I 0 ˙ i P