Metamath Proof Explorer


Theorem ufdprmidl

Description: In a unique factorization domain R , a nonzero prime ideal J contains a prime element p . (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses isufd.i I = PrmIdeal R
isufd.3 P = RPrime R
isufd.0 0 ˙ = 0 R
ufdprmidl.2 φ R UFD
ufdprmidl.3 φ J I
ufdprmidl.4 φ J 0 ˙
Assertion ufdprmidl φ p P p J

Proof

Step Hyp Ref Expression
1 isufd.i I = PrmIdeal R
2 isufd.3 P = RPrime R
3 isufd.0 0 ˙ = 0 R
4 ufdprmidl.2 φ R UFD
5 ufdprmidl.3 φ J I
6 ufdprmidl.4 φ J 0 ˙
7 ineq1 j = J j P = J P
8 7 neeq1d j = J j P J P
9 8 adantl φ j = J j P J P
10 incom P J = J P
11 10 neeq1i P J J P
12 inn0 P J p P p J
13 11 12 bitr3i J P p P p J
14 9 13 bitrdi φ j = J j P p P p J
15 5 6 eldifsnd φ J I 0 ˙
16 1 2 3 isufd R UFD R IDomn j I 0 ˙ j P
17 16 simprbi R UFD j I 0 ˙ j P
18 4 17 syl φ j I 0 ˙ j P
19 14 15 18 rspcdv2 φ p P p J