Metamath Proof Explorer


Theorem ufdprmidl

Description: In a unique factorization domain R , a nonzero prime ideal J contains a prime element p . (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses isufd.i 𝐼 = ( PrmIdeal ‘ 𝑅 )
isufd.3 𝑃 = ( RPrime ‘ 𝑅 )
isufd.0 0 = ( 0g𝑅 )
ufdprmidl.2 ( 𝜑𝑅 ∈ UFD )
ufdprmidl.3 ( 𝜑𝐽𝐼 )
ufdprmidl.4 ( 𝜑𝐽 ≠ { 0 } )
Assertion ufdprmidl ( 𝜑 → ∃ 𝑝𝑃 𝑝𝐽 )

Proof

Step Hyp Ref Expression
1 isufd.i 𝐼 = ( PrmIdeal ‘ 𝑅 )
2 isufd.3 𝑃 = ( RPrime ‘ 𝑅 )
3 isufd.0 0 = ( 0g𝑅 )
4 ufdprmidl.2 ( 𝜑𝑅 ∈ UFD )
5 ufdprmidl.3 ( 𝜑𝐽𝐼 )
6 ufdprmidl.4 ( 𝜑𝐽 ≠ { 0 } )
7 ineq1 ( 𝑗 = 𝐽 → ( 𝑗𝑃 ) = ( 𝐽𝑃 ) )
8 7 neeq1d ( 𝑗 = 𝐽 → ( ( 𝑗𝑃 ) ≠ ∅ ↔ ( 𝐽𝑃 ) ≠ ∅ ) )
9 8 adantl ( ( 𝜑𝑗 = 𝐽 ) → ( ( 𝑗𝑃 ) ≠ ∅ ↔ ( 𝐽𝑃 ) ≠ ∅ ) )
10 incom ( 𝑃𝐽 ) = ( 𝐽𝑃 )
11 10 neeq1i ( ( 𝑃𝐽 ) ≠ ∅ ↔ ( 𝐽𝑃 ) ≠ ∅ )
12 inn0 ( ( 𝑃𝐽 ) ≠ ∅ ↔ ∃ 𝑝𝑃 𝑝𝐽 )
13 11 12 bitr3i ( ( 𝐽𝑃 ) ≠ ∅ ↔ ∃ 𝑝𝑃 𝑝𝐽 )
14 9 13 bitrdi ( ( 𝜑𝑗 = 𝐽 ) → ( ( 𝑗𝑃 ) ≠ ∅ ↔ ∃ 𝑝𝑃 𝑝𝐽 ) )
15 5 6 eldifsnd ( 𝜑𝐽 ∈ ( 𝐼 ∖ { { 0 } } ) )
16 1 2 3 isufd ( 𝑅 ∈ UFD ↔ ( 𝑅 ∈ IDomn ∧ ∀ 𝑗 ∈ ( 𝐼 ∖ { { 0 } } ) ( 𝑗𝑃 ) ≠ ∅ ) )
17 16 simprbi ( 𝑅 ∈ UFD → ∀ 𝑗 ∈ ( 𝐼 ∖ { { 0 } } ) ( 𝑗𝑃 ) ≠ ∅ )
18 4 17 syl ( 𝜑 → ∀ 𝑗 ∈ ( 𝐼 ∖ { { 0 } } ) ( 𝑗𝑃 ) ≠ ∅ )
19 14 15 18 rspcdv2 ( 𝜑 → ∃ 𝑝𝑃 𝑝𝐽 )