Metamath Proof Explorer


Theorem ufdprmidl

Description: In a unique factorization domain R , a nonzero prime ideal J contains a prime element p . (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses isufd.i
|- I = ( PrmIdeal ` R )
isufd.3
|- P = ( RPrime ` R )
isufd.0
|- .0. = ( 0g ` R )
ufdprmidl.2
|- ( ph -> R e. UFD )
ufdprmidl.3
|- ( ph -> J e. I )
ufdprmidl.4
|- ( ph -> J =/= { .0. } )
Assertion ufdprmidl
|- ( ph -> E. p e. P p e. J )

Proof

Step Hyp Ref Expression
1 isufd.i
 |-  I = ( PrmIdeal ` R )
2 isufd.3
 |-  P = ( RPrime ` R )
3 isufd.0
 |-  .0. = ( 0g ` R )
4 ufdprmidl.2
 |-  ( ph -> R e. UFD )
5 ufdprmidl.3
 |-  ( ph -> J e. I )
6 ufdprmidl.4
 |-  ( ph -> J =/= { .0. } )
7 ineq1
 |-  ( j = J -> ( j i^i P ) = ( J i^i P ) )
8 7 neeq1d
 |-  ( j = J -> ( ( j i^i P ) =/= (/) <-> ( J i^i P ) =/= (/) ) )
9 8 adantl
 |-  ( ( ph /\ j = J ) -> ( ( j i^i P ) =/= (/) <-> ( J i^i P ) =/= (/) ) )
10 incom
 |-  ( P i^i J ) = ( J i^i P )
11 10 neeq1i
 |-  ( ( P i^i J ) =/= (/) <-> ( J i^i P ) =/= (/) )
12 inn0
 |-  ( ( P i^i J ) =/= (/) <-> E. p e. P p e. J )
13 11 12 bitr3i
 |-  ( ( J i^i P ) =/= (/) <-> E. p e. P p e. J )
14 9 13 bitrdi
 |-  ( ( ph /\ j = J ) -> ( ( j i^i P ) =/= (/) <-> E. p e. P p e. J ) )
15 5 6 eldifsnd
 |-  ( ph -> J e. ( I \ { { .0. } } ) )
16 1 2 3 isufd
 |-  ( R e. UFD <-> ( R e. IDomn /\ A. j e. ( I \ { { .0. } } ) ( j i^i P ) =/= (/) ) )
17 16 simprbi
 |-  ( R e. UFD -> A. j e. ( I \ { { .0. } } ) ( j i^i P ) =/= (/) )
18 4 17 syl
 |-  ( ph -> A. j e. ( I \ { { .0. } } ) ( j i^i P ) =/= (/) )
19 14 15 18 rspcdv2
 |-  ( ph -> E. p e. P p e. J )