Step |
Hyp |
Ref |
Expression |
1 |
|
isufd.i |
|- I = ( PrmIdeal ` R ) |
2 |
|
isufd.3 |
|- P = ( RPrime ` R ) |
3 |
|
isufd.0 |
|- .0. = ( 0g ` R ) |
4 |
|
ufdprmidl.2 |
|- ( ph -> R e. UFD ) |
5 |
|
ufdprmidl.3 |
|- ( ph -> J e. I ) |
6 |
|
ufdprmidl.4 |
|- ( ph -> J =/= { .0. } ) |
7 |
|
ineq1 |
|- ( j = J -> ( j i^i P ) = ( J i^i P ) ) |
8 |
7
|
neeq1d |
|- ( j = J -> ( ( j i^i P ) =/= (/) <-> ( J i^i P ) =/= (/) ) ) |
9 |
8
|
adantl |
|- ( ( ph /\ j = J ) -> ( ( j i^i P ) =/= (/) <-> ( J i^i P ) =/= (/) ) ) |
10 |
|
incom |
|- ( P i^i J ) = ( J i^i P ) |
11 |
10
|
neeq1i |
|- ( ( P i^i J ) =/= (/) <-> ( J i^i P ) =/= (/) ) |
12 |
|
inn0 |
|- ( ( P i^i J ) =/= (/) <-> E. p e. P p e. J ) |
13 |
11 12
|
bitr3i |
|- ( ( J i^i P ) =/= (/) <-> E. p e. P p e. J ) |
14 |
9 13
|
bitrdi |
|- ( ( ph /\ j = J ) -> ( ( j i^i P ) =/= (/) <-> E. p e. P p e. J ) ) |
15 |
5 6
|
eldifsnd |
|- ( ph -> J e. ( I \ { { .0. } } ) ) |
16 |
1 2 3
|
isufd |
|- ( R e. UFD <-> ( R e. IDomn /\ A. j e. ( I \ { { .0. } } ) ( j i^i P ) =/= (/) ) ) |
17 |
16
|
simprbi |
|- ( R e. UFD -> A. j e. ( I \ { { .0. } } ) ( j i^i P ) =/= (/) ) |
18 |
4 17
|
syl |
|- ( ph -> A. j e. ( I \ { { .0. } } ) ( j i^i P ) =/= (/) ) |
19 |
14 15 18
|
rspcdv2 |
|- ( ph -> E. p e. P p e. J ) |