Metamath Proof Explorer


Definition df-ufd

Description: Define the class of unique factorization domains. A unique factorization domain (UFD for short), is a commutative ring with an absolute value (from abvtriv this is equivalent to being a domain) such that every prime ideal contains a prime element (this is a characterization due to Irving Kaplansky). A UFD is sometimes also called a "factorial ring" following the terminology of Bourbaki. (Contributed by Mario Carneiro, 17-Feb-2015)

Ref Expression
Assertion df-ufd
|- UFD = { r e. CRing | ( ( AbsVal ` r ) =/= (/) /\ A. i e. ( PrmIdeal ` r ) ( i i^i ( RPrime ` r ) ) =/= (/) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cufd
 |-  UFD
1 vr
 |-  r
2 ccrg
 |-  CRing
3 cabv
 |-  AbsVal
4 1 cv
 |-  r
5 4 3 cfv
 |-  ( AbsVal ` r )
6 c0
 |-  (/)
7 5 6 wne
 |-  ( AbsVal ` r ) =/= (/)
8 vi
 |-  i
9 cprmidl
 |-  PrmIdeal
10 4 9 cfv
 |-  ( PrmIdeal ` r )
11 8 cv
 |-  i
12 crpm
 |-  RPrime
13 4 12 cfv
 |-  ( RPrime ` r )
14 11 13 cin
 |-  ( i i^i ( RPrime ` r ) )
15 14 6 wne
 |-  ( i i^i ( RPrime ` r ) ) =/= (/)
16 15 8 10 wral
 |-  A. i e. ( PrmIdeal ` r ) ( i i^i ( RPrime ` r ) ) =/= (/)
17 7 16 wa
 |-  ( ( AbsVal ` r ) =/= (/) /\ A. i e. ( PrmIdeal ` r ) ( i i^i ( RPrime ` r ) ) =/= (/) )
18 17 1 2 crab
 |-  { r e. CRing | ( ( AbsVal ` r ) =/= (/) /\ A. i e. ( PrmIdeal ` r ) ( i i^i ( RPrime ` r ) ) =/= (/) ) }
19 0 18 wceq
 |-  UFD = { r e. CRing | ( ( AbsVal ` r ) =/= (/) /\ A. i e. ( PrmIdeal ` r ) ( i i^i ( RPrime ` r ) ) =/= (/) ) }