Metamath Proof Explorer


Definition df-ufd

Description: Define the class of unique factorization domains. A unique factorization domain (UFD for short), is an integral domain such that every nonzero prime ideal contains a prime element (this is a characterization due to Irving Kaplansky). A UFD is sometimes also called a "factorial ring" following the terminology of Bourbaki. (Contributed by Mario Carneiro, 17-Feb-2015) Exclude the 0 prime ideal. (Revised by Thierry Arnoux, 9-May-2025) Exclude the 0 ring. (Revised by Thierry Arnoux, 14-Jun-2025)

Ref Expression
Assertion df-ufd
|- UFD = { r e. IDomn | A. i e. ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) ( i i^i ( RPrime ` r ) ) =/= (/) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cufd
 |-  UFD
1 vr
 |-  r
2 cidom
 |-  IDomn
3 vi
 |-  i
4 cprmidl
 |-  PrmIdeal
5 1 cv
 |-  r
6 5 4 cfv
 |-  ( PrmIdeal ` r )
7 c0g
 |-  0g
8 5 7 cfv
 |-  ( 0g ` r )
9 8 csn
 |-  { ( 0g ` r ) }
10 9 csn
 |-  { { ( 0g ` r ) } }
11 6 10 cdif
 |-  ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } )
12 3 cv
 |-  i
13 crpm
 |-  RPrime
14 5 13 cfv
 |-  ( RPrime ` r )
15 12 14 cin
 |-  ( i i^i ( RPrime ` r ) )
16 c0
 |-  (/)
17 15 16 wne
 |-  ( i i^i ( RPrime ` r ) ) =/= (/)
18 17 3 11 wral
 |-  A. i e. ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) ( i i^i ( RPrime ` r ) ) =/= (/)
19 18 1 2 crab
 |-  { r e. IDomn | A. i e. ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) ( i i^i ( RPrime ` r ) ) =/= (/) }
20 0 19 wceq
 |-  UFD = { r e. IDomn | A. i e. ( ( PrmIdeal ` r ) \ { { ( 0g ` r ) } } ) ( i i^i ( RPrime ` r ) ) =/= (/) }