Description: Define the class of unique factorization domains. A unique factorization domain (UFD for short), is a commutative ring with an absolute value (from abvtriv this is equivalent to being a domain) such that every prime ideal contains a prime element (this is a characterization due to Irving Kaplansky). A UFD is sometimes also called a "factorial ring" following the terminology of Bourbaki. (Contributed by Mario Carneiro, 17-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-ufd | |- UFD = { r e. CRing | ( ( AbsVal ` r ) =/= (/) /\ A. i e. ( PrmIdeal ` r ) ( i i^i ( RPrime ` r ) ) =/= (/) ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cufd | |- UFD |
|
1 | vr | |- r |
|
2 | ccrg | |- CRing |
|
3 | cabv | |- AbsVal |
|
4 | 1 | cv | |- r |
5 | 4 3 | cfv | |- ( AbsVal ` r ) |
6 | c0 | |- (/) |
|
7 | 5 6 | wne | |- ( AbsVal ` r ) =/= (/) |
8 | vi | |- i |
|
9 | cprmidl | |- PrmIdeal |
|
10 | 4 9 | cfv | |- ( PrmIdeal ` r ) |
11 | 8 | cv | |- i |
12 | crpm | |- RPrime |
|
13 | 4 12 | cfv | |- ( RPrime ` r ) |
14 | 11 13 | cin | |- ( i i^i ( RPrime ` r ) ) |
15 | 14 6 | wne | |- ( i i^i ( RPrime ` r ) ) =/= (/) |
16 | 15 8 10 | wral | |- A. i e. ( PrmIdeal ` r ) ( i i^i ( RPrime ` r ) ) =/= (/) |
17 | 7 16 | wa | |- ( ( AbsVal ` r ) =/= (/) /\ A. i e. ( PrmIdeal ` r ) ( i i^i ( RPrime ` r ) ) =/= (/) ) |
18 | 17 1 2 | crab | |- { r e. CRing | ( ( AbsVal ` r ) =/= (/) /\ A. i e. ( PrmIdeal ` r ) ( i i^i ( RPrime ` r ) ) =/= (/) ) } |
19 | 0 18 | wceq | |- UFD = { r e. CRing | ( ( AbsVal ` r ) =/= (/) /\ A. i e. ( PrmIdeal ` r ) ( i i^i ( RPrime ` r ) ) =/= (/) ) } |