Metamath Proof Explorer


Definition df-ufd

Description: Define the class of unique factorization domains. A unique factorization domain (UFD for short), is an integral domain such that every nonzero prime ideal contains a prime element (this is a characterization due to Irving Kaplansky). A UFD is sometimes also called a "factorial ring" following the terminology of Bourbaki. (Contributed by Mario Carneiro, 17-Feb-2015) Exclude the 0 prime ideal. (Revised by Thierry Arnoux, 9-May-2025) Exclude the 0 ring. (Revised by Thierry Arnoux, 14-Jun-2025)

Ref Expression
Assertion df-ufd UFD = { 𝑟 ∈ IDomn ∣ ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑟 ) ∖ { { ( 0g𝑟 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑟 ) ) ≠ ∅ }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cufd UFD
1 vr 𝑟
2 cidom IDomn
3 vi 𝑖
4 cprmidl PrmIdeal
5 1 cv 𝑟
6 5 4 cfv ( PrmIdeal ‘ 𝑟 )
7 c0g 0g
8 5 7 cfv ( 0g𝑟 )
9 8 csn { ( 0g𝑟 ) }
10 9 csn { { ( 0g𝑟 ) } }
11 6 10 cdif ( ( PrmIdeal ‘ 𝑟 ) ∖ { { ( 0g𝑟 ) } } )
12 3 cv 𝑖
13 crpm RPrime
14 5 13 cfv ( RPrime ‘ 𝑟 )
15 12 14 cin ( 𝑖 ∩ ( RPrime ‘ 𝑟 ) )
16 c0
17 15 16 wne ( 𝑖 ∩ ( RPrime ‘ 𝑟 ) ) ≠ ∅
18 17 3 11 wral 𝑖 ∈ ( ( PrmIdeal ‘ 𝑟 ) ∖ { { ( 0g𝑟 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑟 ) ) ≠ ∅
19 18 1 2 crab { 𝑟 ∈ IDomn ∣ ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑟 ) ∖ { { ( 0g𝑟 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑟 ) ) ≠ ∅ }
20 0 19 wceq UFD = { 𝑟 ∈ IDomn ∣ ∀ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑟 ) ∖ { { ( 0g𝑟 ) } } ) ( 𝑖 ∩ ( RPrime ‘ 𝑟 ) ) ≠ ∅ }