Metamath Proof Explorer


Theorem abvtriv

Description: The trivial absolute value. (Contributed by Mario Carneiro, 8-Sep-2014) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses abvtriv.a
|- A = ( AbsVal ` R )
abvtriv.b
|- B = ( Base ` R )
abvtriv.z
|- .0. = ( 0g ` R )
abvtriv.f
|- F = ( x e. B |-> if ( x = .0. , 0 , 1 ) )
Assertion abvtriv
|- ( R e. DivRing -> F e. A )

Proof

Step Hyp Ref Expression
1 abvtriv.a
 |-  A = ( AbsVal ` R )
2 abvtriv.b
 |-  B = ( Base ` R )
3 abvtriv.z
 |-  .0. = ( 0g ` R )
4 abvtriv.f
 |-  F = ( x e. B |-> if ( x = .0. , 0 , 1 ) )
5 drngdomn
 |-  ( R e. DivRing -> R e. Domn )
6 1 2 3 4 abvtrivg
 |-  ( R e. Domn -> F e. A )
7 5 6 syl
 |-  ( R e. DivRing -> F e. A )