| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abv0.a |
|- A = ( AbsVal ` R ) |
| 2 |
|
abvneg.b |
|- B = ( Base ` R ) |
| 3 |
|
abvrec.z |
|- .0. = ( 0g ` R ) |
| 4 |
|
abvdom.t |
|- .x. = ( .r ` R ) |
| 5 |
|
simp1 |
|- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> F e. A ) |
| 6 |
|
simp2l |
|- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> X e. B ) |
| 7 |
|
simp3l |
|- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> Y e. B ) |
| 8 |
1 2 4
|
abvmul |
|- ( ( F e. A /\ X e. B /\ Y e. B ) -> ( F ` ( X .x. Y ) ) = ( ( F ` X ) x. ( F ` Y ) ) ) |
| 9 |
5 6 7 8
|
syl3anc |
|- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( F ` ( X .x. Y ) ) = ( ( F ` X ) x. ( F ` Y ) ) ) |
| 10 |
1 2
|
abvcl |
|- ( ( F e. A /\ X e. B ) -> ( F ` X ) e. RR ) |
| 11 |
5 6 10
|
syl2anc |
|- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( F ` X ) e. RR ) |
| 12 |
11
|
recnd |
|- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( F ` X ) e. CC ) |
| 13 |
1 2
|
abvcl |
|- ( ( F e. A /\ Y e. B ) -> ( F ` Y ) e. RR ) |
| 14 |
5 7 13
|
syl2anc |
|- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( F ` Y ) e. RR ) |
| 15 |
14
|
recnd |
|- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( F ` Y ) e. CC ) |
| 16 |
|
simp2r |
|- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> X =/= .0. ) |
| 17 |
1 2 3
|
abvne0 |
|- ( ( F e. A /\ X e. B /\ X =/= .0. ) -> ( F ` X ) =/= 0 ) |
| 18 |
5 6 16 17
|
syl3anc |
|- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( F ` X ) =/= 0 ) |
| 19 |
|
simp3r |
|- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> Y =/= .0. ) |
| 20 |
1 2 3
|
abvne0 |
|- ( ( F e. A /\ Y e. B /\ Y =/= .0. ) -> ( F ` Y ) =/= 0 ) |
| 21 |
5 7 19 20
|
syl3anc |
|- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( F ` Y ) =/= 0 ) |
| 22 |
12 15 18 21
|
mulne0d |
|- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( ( F ` X ) x. ( F ` Y ) ) =/= 0 ) |
| 23 |
9 22
|
eqnetrd |
|- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( F ` ( X .x. Y ) ) =/= 0 ) |
| 24 |
1 3
|
abv0 |
|- ( F e. A -> ( F ` .0. ) = 0 ) |
| 25 |
5 24
|
syl |
|- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( F ` .0. ) = 0 ) |
| 26 |
|
fveqeq2 |
|- ( ( X .x. Y ) = .0. -> ( ( F ` ( X .x. Y ) ) = 0 <-> ( F ` .0. ) = 0 ) ) |
| 27 |
25 26
|
syl5ibrcom |
|- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( ( X .x. Y ) = .0. -> ( F ` ( X .x. Y ) ) = 0 ) ) |
| 28 |
27
|
necon3d |
|- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( ( F ` ( X .x. Y ) ) =/= 0 -> ( X .x. Y ) =/= .0. ) ) |
| 29 |
23 28
|
mpd |
|- ( ( F e. A /\ ( X e. B /\ X =/= .0. ) /\ ( Y e. B /\ Y =/= .0. ) ) -> ( X .x. Y ) =/= .0. ) |