Metamath Proof Explorer


Theorem pidufd

Description: Every principal ideal domain is a unique factorization domain. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypothesis pidufd.1 φ R PID
Assertion pidufd φ R UFD

Proof

Step Hyp Ref Expression
1 pidufd.1 φ R PID
2 df-pid PID = IDomn LPIR
3 1 2 eleqtrdi φ R IDomn LPIR
4 3 elin1d φ R IDomn
5 4 idomringd φ R Ring
6 5 ad3antrrr φ i PrmIdeal R 0 R x Base R i = RSpan R x R Ring
7 simplr φ i PrmIdeal R 0 R x Base R i = RSpan R x x Base R
8 eqid Base R = Base R
9 eqid RSpan R = RSpan R
10 8 9 rspsnid R Ring x Base R x RSpan R x
11 6 7 10 syl2anc φ i PrmIdeal R 0 R x Base R i = RSpan R x x RSpan R x
12 simpr φ i PrmIdeal R 0 R x Base R i = RSpan R x i = RSpan R x
13 11 12 eleqtrrd φ i PrmIdeal R 0 R x Base R i = RSpan R x x i
14 simpr φ i PrmIdeal R 0 R i PrmIdeal R 0 R
15 14 eldifad φ i PrmIdeal R 0 R i PrmIdeal R
16 15 ad2antrr φ i PrmIdeal R 0 R x Base R i = RSpan R x i PrmIdeal R
17 12 16 eqeltrrd φ i PrmIdeal R 0 R x Base R i = RSpan R x RSpan R x PrmIdeal R
18 eqid 0 R = 0 R
19 eqid RPrime R = RPrime R
20 4 ad3antrrr φ i PrmIdeal R 0 R x Base R i = RSpan R x R IDomn
21 simplr φ i PrmIdeal R 0 R x Base R i = RSpan R x x = 0 R i = RSpan R x
22 simpr φ i PrmIdeal R 0 R x Base R i = RSpan R x x = 0 R x = 0 R
23 22 sneqd φ i PrmIdeal R 0 R x Base R i = RSpan R x x = 0 R x = 0 R
24 23 fveq2d φ i PrmIdeal R 0 R x Base R i = RSpan R x x = 0 R RSpan R x = RSpan R 0 R
25 9 18 rsp0 R Ring RSpan R 0 R = 0 R
26 5 25 syl φ RSpan R 0 R = 0 R
27 26 ad4antr φ i PrmIdeal R 0 R x Base R i = RSpan R x x = 0 R RSpan R 0 R = 0 R
28 21 24 27 3eqtrd φ i PrmIdeal R 0 R x Base R i = RSpan R x x = 0 R i = 0 R
29 eldifsni i PrmIdeal R 0 R i 0 R
30 29 ad4antlr φ i PrmIdeal R 0 R x Base R i = RSpan R x x = 0 R i 0 R
31 30 neneqd φ i PrmIdeal R 0 R x Base R i = RSpan R x x = 0 R ¬ i = 0 R
32 28 31 pm2.65da φ i PrmIdeal R 0 R x Base R i = RSpan R x ¬ x = 0 R
33 32 neqned φ i PrmIdeal R 0 R x Base R i = RSpan R x x 0 R
34 18 8 19 9 20 7 33 rsprprmprmidlb φ i PrmIdeal R 0 R x Base R i = RSpan R x x RPrime R RSpan R x PrmIdeal R
35 17 34 mpbird φ i PrmIdeal R 0 R x Base R i = RSpan R x x RPrime R
36 13 35 elind φ i PrmIdeal R 0 R x Base R i = RSpan R x x i RPrime R
37 36 ne0d φ i PrmIdeal R 0 R x Base R i = RSpan R x i RPrime R
38 eqid LIdeal R = LIdeal R
39 3 elin2d φ R LPIR
40 39 adantr φ i PrmIdeal R 0 R R LPIR
41 5 adantr φ i PrmIdeal R 0 R R Ring
42 prmidlidl R Ring i PrmIdeal R i LIdeal R
43 41 15 42 syl2anc φ i PrmIdeal R 0 R i LIdeal R
44 8 38 9 40 43 lpirlidllpi φ i PrmIdeal R 0 R x Base R i = RSpan R x
45 37 44 r19.29a φ i PrmIdeal R 0 R i RPrime R
46 45 ralrimiva φ i PrmIdeal R 0 R i RPrime R
47 eqid PrmIdeal R = PrmIdeal R
48 47 19 18 isufd R UFD R IDomn i PrmIdeal R 0 R i RPrime R
49 4 46 48 sylanbrc φ R UFD