Step |
Hyp |
Ref |
Expression |
1 |
|
rsprprmprmidlb.0 |
|
2 |
|
rsprprmprmidlb.b |
|
3 |
|
rsprprmprmidlb.p |
|
4 |
|
rsprprmprmidlb.k |
|
5 |
|
rsprprmprmidlb.r |
|
6 |
|
rsprprmprmidlb.x |
|
7 |
|
rsprprmprmidlb.1 |
|
8 |
5
|
idomcringd |
|
9 |
8
|
adantr |
|
10 |
3
|
a1i |
|
11 |
10
|
eleq2d |
|
12 |
11
|
biimpa |
|
13 |
4 9 12
|
rsprprmprmidl |
|
14 |
5
|
adantr |
|
15 |
6
|
adantr |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
16 4 17 2 15 14
|
unitpidl1 |
|
19 |
18
|
biimpar |
|
20 |
14
|
idomringd |
|
21 |
|
eqid |
|
22 |
2 21
|
prmidlnr |
|
23 |
20 22
|
sylancom |
|
24 |
23
|
adantr |
|
25 |
24
|
neneqd |
|
26 |
19 25
|
pm2.65da |
|
27 |
|
nelsn |
|
28 |
7 27
|
syl |
|
29 |
28
|
adantr |
|
30 |
|
eqid |
|
31 |
|
nelun |
|
32 |
30 31
|
ax-mp |
|
33 |
26 29 32
|
sylanbrc |
|
34 |
15 33
|
eldifd |
|
35 |
|
eqid |
|
36 |
20
|
ad3antrrr |
|
37 |
6
|
ad4antr |
|
38 |
2 4 35 36 37
|
ellpi |
|
39 |
38
|
biimpa |
|
40 |
2 4 35 36 37
|
ellpi |
|
41 |
40
|
biimpa |
|
42 |
8
|
ad4antr |
|
43 |
|
simp-4r |
|
44 |
|
simpllr |
|
45 |
|
simplr |
|
46 |
20
|
ad2antrr |
|
47 |
6
|
ad3antrrr |
|
48 |
2 4 35 46 47
|
ellpi |
|
49 |
48
|
biimpar |
|
50 |
2 21
|
prmidlc |
|
51 |
42 43 44 45 49 50
|
syl23anc |
|
52 |
39 41 51
|
orim12da |
|
53 |
52
|
ex |
|
54 |
53
|
anasss |
|
55 |
54
|
ralrimivva |
|
56 |
2 16 1 35 21
|
isrprm |
|
57 |
56
|
biimpar |
|
58 |
14 34 55 57
|
syl12anc |
|
59 |
58 3
|
eleqtrrdi |
|
60 |
13 59
|
impbida |
|