| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1arithufd.b |
|
| 2 |
|
1arithufd.0 |
|
| 3 |
|
1arithufd.u |
|
| 4 |
|
1arithufd.p |
|
| 5 |
|
1arithufd.m |
|
| 6 |
|
1arithufd.r |
|
| 7 |
|
1arithufdlem.2 |
|
| 8 |
|
1arithufdlem.s |
|
| 9 |
|
eqeq1 |
|
| 10 |
9
|
rexbidv |
|
| 11 |
6
|
ad2antrr |
|
| 12 |
11
|
ad2antrr |
|
| 13 |
|
simplr |
|
| 14 |
1 4 12 13
|
rprmcl |
|
| 15 |
|
oveq2 |
|
| 16 |
15
|
eqeq2d |
|
| 17 |
13
|
s1cld |
|
| 18 |
5 1
|
mgpbas |
|
| 19 |
18
|
gsumws1 |
|
| 20 |
14 19
|
syl |
|
| 21 |
20
|
eqcomd |
|
| 22 |
16 17 21
|
rspcedvdw |
|
| 23 |
10 14 22
|
elrabd |
|
| 24 |
23 8
|
eleqtrrdi |
|
| 25 |
24
|
ne0d |
|
| 26 |
|
eqid |
|
| 27 |
6
|
ufdidom |
|
| 28 |
27
|
idomcringd |
|
| 29 |
28
|
ad2antrr |
|
| 30 |
|
simplr |
|
| 31 |
|
eqid |
|
| 32 |
31
|
mxidlprm |
|
| 33 |
29 30 32
|
syl2anc |
|
| 34 |
|
simpr |
|
| 35 |
26 4 2 11 33 34
|
ufdprmidl |
|
| 36 |
25 35
|
r19.29a |
|
| 37 |
27
|
idomdomd |
|
| 38 |
|
domnnzr |
|
| 39 |
37 38
|
syl |
|
| 40 |
2 39 7
|
krullndrng |
|
| 41 |
36 40
|
r19.29a |
|