Metamath Proof Explorer


Theorem 1arithufdlem1

Description: Lemma for 1arithufd . The set S of elements which can be written as a product of primes is not empty. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses 1arithufd.b B = Base R
1arithufd.0 0 ˙ = 0 R
1arithufd.u U = Unit R
1arithufd.p P = RPrime R
1arithufd.m M = mulGrp R
1arithufd.r φ R UFD
1arithufdlem.2 φ ¬ R DivRing
1arithufdlem.s S = x B | f Word P x = M f
Assertion 1arithufdlem1 φ S

Proof

Step Hyp Ref Expression
1 1arithufd.b B = Base R
2 1arithufd.0 0 ˙ = 0 R
3 1arithufd.u U = Unit R
4 1arithufd.p P = RPrime R
5 1arithufd.m M = mulGrp R
6 1arithufd.r φ R UFD
7 1arithufdlem.2 φ ¬ R DivRing
8 1arithufdlem.s S = x B | f Word P x = M f
9 eqeq1 x = p x = M f p = M f
10 9 rexbidv x = p f Word P x = M f f Word P p = M f
11 6 ad2antrr φ m MaxIdeal R m 0 ˙ R UFD
12 11 ad2antrr φ m MaxIdeal R m 0 ˙ p P p m R UFD
13 simplr φ m MaxIdeal R m 0 ˙ p P p m p P
14 1 4 12 13 rprmcl φ m MaxIdeal R m 0 ˙ p P p m p B
15 oveq2 f = ⟨“ p ”⟩ M f = M ⟨“ p ”⟩
16 15 eqeq2d f = ⟨“ p ”⟩ p = M f p = M ⟨“ p ”⟩
17 13 s1cld φ m MaxIdeal R m 0 ˙ p P p m ⟨“ p ”⟩ Word P
18 5 1 mgpbas B = Base M
19 18 gsumws1 p B M ⟨“ p ”⟩ = p
20 14 19 syl φ m MaxIdeal R m 0 ˙ p P p m M ⟨“ p ”⟩ = p
21 20 eqcomd φ m MaxIdeal R m 0 ˙ p P p m p = M ⟨“ p ”⟩
22 16 17 21 rspcedvdw φ m MaxIdeal R m 0 ˙ p P p m f Word P p = M f
23 10 14 22 elrabd φ m MaxIdeal R m 0 ˙ p P p m p x B | f Word P x = M f
24 23 8 eleqtrrdi φ m MaxIdeal R m 0 ˙ p P p m p S
25 24 ne0d φ m MaxIdeal R m 0 ˙ p P p m S
26 eqid PrmIdeal R = PrmIdeal R
27 6 ufdidom φ R IDomn
28 27 idomcringd φ R CRing
29 28 ad2antrr φ m MaxIdeal R m 0 ˙ R CRing
30 simplr φ m MaxIdeal R m 0 ˙ m MaxIdeal R
31 eqid LSSum mulGrp R = LSSum mulGrp R
32 31 mxidlprm R CRing m MaxIdeal R m PrmIdeal R
33 29 30 32 syl2anc φ m MaxIdeal R m 0 ˙ m PrmIdeal R
34 simpr φ m MaxIdeal R m 0 ˙ m 0 ˙
35 26 4 2 11 33 34 ufdprmidl φ m MaxIdeal R m 0 ˙ p P p m
36 25 35 r19.29a φ m MaxIdeal R m 0 ˙ S
37 27 idomdomd φ R Domn
38 domnnzr R Domn R NzRing
39 37 38 syl φ R NzRing
40 2 39 7 krullndrng φ m MaxIdeal R m 0 ˙
41 36 40 r19.29a φ S