| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1arithufd.b |
|
| 2 |
|
1arithufd.0 |
|
| 3 |
|
1arithufd.u |
|
| 4 |
|
1arithufd.p |
|
| 5 |
|
1arithufd.m |
|
| 6 |
|
1arithufd.r |
|
| 7 |
|
1arithufd.x |
|
| 8 |
|
1arithufd.2 |
|
| 9 |
|
1arithufd.3 |
|
| 10 |
|
simpr |
|
| 11 |
7
|
adantr |
|
| 12 |
9
|
adantr |
|
| 13 |
1 3 2
|
drngunit |
|
| 14 |
13
|
biimpar |
|
| 15 |
10 11 12 14
|
syl12anc |
|
| 16 |
8
|
adantr |
|
| 17 |
15 16
|
pm2.21dd |
|
| 18 |
6
|
adantr |
|
| 19 |
|
simpr |
|
| 20 |
|
eqeq1 |
|
| 21 |
20
|
rexbidv |
|
| 22 |
21
|
cbvrabv |
|
| 23 |
|
oveq2 |
|
| 24 |
23
|
eqeq2d |
|
| 25 |
24
|
cbvrexvw |
|
| 26 |
22 25
|
rabbieq |
|
| 27 |
7
|
adantr |
|
| 28 |
8
|
adantr |
|
| 29 |
9
|
adantr |
|
| 30 |
1 2 3 4 5 18 19 26 27 28 29
|
1arithufdlem4 |
|
| 31 |
|
eqeq1 |
|
| 32 |
31
|
rexbidv |
|
| 33 |
32
|
elrab |
|
| 34 |
30 33
|
sylib |
|
| 35 |
34
|
simprd |
|
| 36 |
17 35
|
pm2.61dan |
|