| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1arithufd.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | 1arithufd.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 3 |  | 1arithufd.u | ⊢ 𝑈  =  ( Unit ‘ 𝑅 ) | 
						
							| 4 |  | 1arithufd.p | ⊢ 𝑃  =  ( RPrime ‘ 𝑅 ) | 
						
							| 5 |  | 1arithufd.m | ⊢ 𝑀  =  ( mulGrp ‘ 𝑅 ) | 
						
							| 6 |  | 1arithufd.r | ⊢ ( 𝜑  →  𝑅  ∈  UFD ) | 
						
							| 7 |  | 1arithufd.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 8 |  | 1arithufd.2 | ⊢ ( 𝜑  →  ¬  𝑋  ∈  𝑈 ) | 
						
							| 9 |  | 1arithufd.3 | ⊢ ( 𝜑  →  𝑋  ≠   0  ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑅  ∈  DivRing )  →  𝑅  ∈  DivRing ) | 
						
							| 11 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  ∈  DivRing )  →  𝑋  ∈  𝐵 ) | 
						
							| 12 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  ∈  DivRing )  →  𝑋  ≠   0  ) | 
						
							| 13 | 1 3 2 | drngunit | ⊢ ( 𝑅  ∈  DivRing  →  ( 𝑋  ∈  𝑈  ↔  ( 𝑋  ∈  𝐵  ∧  𝑋  ≠   0  ) ) ) | 
						
							| 14 | 13 | biimpar | ⊢ ( ( 𝑅  ∈  DivRing  ∧  ( 𝑋  ∈  𝐵  ∧  𝑋  ≠   0  ) )  →  𝑋  ∈  𝑈 ) | 
						
							| 15 | 10 11 12 14 | syl12anc | ⊢ ( ( 𝜑  ∧  𝑅  ∈  DivRing )  →  𝑋  ∈  𝑈 ) | 
						
							| 16 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑅  ∈  DivRing )  →  ¬  𝑋  ∈  𝑈 ) | 
						
							| 17 | 15 16 | pm2.21dd | ⊢ ( ( 𝜑  ∧  𝑅  ∈  DivRing )  →  ∃ 𝑓  ∈  Word  𝑃 𝑋  =  ( 𝑀  Σg  𝑓 ) ) | 
						
							| 18 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑅  ∈  DivRing )  →  𝑅  ∈  UFD ) | 
						
							| 19 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  𝑅  ∈  DivRing )  →  ¬  𝑅  ∈  DivRing ) | 
						
							| 20 |  | eqeq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  =  ( 𝑀  Σg  𝑓 )  ↔  𝑥  =  ( 𝑀  Σg  𝑓 ) ) ) | 
						
							| 21 | 20 | rexbidv | ⊢ ( 𝑦  =  𝑥  →  ( ∃ 𝑓  ∈  Word  𝑃 𝑦  =  ( 𝑀  Σg  𝑓 )  ↔  ∃ 𝑓  ∈  Word  𝑃 𝑥  =  ( 𝑀  Σg  𝑓 ) ) ) | 
						
							| 22 | 21 | cbvrabv | ⊢ { 𝑦  ∈  𝐵  ∣  ∃ 𝑓  ∈  Word  𝑃 𝑦  =  ( 𝑀  Σg  𝑓 ) }  =  { 𝑥  ∈  𝐵  ∣  ∃ 𝑓  ∈  Word  𝑃 𝑥  =  ( 𝑀  Σg  𝑓 ) } | 
						
							| 23 |  | oveq2 | ⊢ ( 𝑓  =  𝑔  →  ( 𝑀  Σg  𝑓 )  =  ( 𝑀  Σg  𝑔 ) ) | 
						
							| 24 | 23 | eqeq2d | ⊢ ( 𝑓  =  𝑔  →  ( 𝑥  =  ( 𝑀  Σg  𝑓 )  ↔  𝑥  =  ( 𝑀  Σg  𝑔 ) ) ) | 
						
							| 25 | 24 | cbvrexvw | ⊢ ( ∃ 𝑓  ∈  Word  𝑃 𝑥  =  ( 𝑀  Σg  𝑓 )  ↔  ∃ 𝑔  ∈  Word  𝑃 𝑥  =  ( 𝑀  Σg  𝑔 ) ) | 
						
							| 26 | 22 25 | rabbieq | ⊢ { 𝑦  ∈  𝐵  ∣  ∃ 𝑓  ∈  Word  𝑃 𝑦  =  ( 𝑀  Σg  𝑓 ) }  =  { 𝑥  ∈  𝐵  ∣  ∃ 𝑔  ∈  Word  𝑃 𝑥  =  ( 𝑀  Σg  𝑔 ) } | 
						
							| 27 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑅  ∈  DivRing )  →  𝑋  ∈  𝐵 ) | 
						
							| 28 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑅  ∈  DivRing )  →  ¬  𝑋  ∈  𝑈 ) | 
						
							| 29 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑅  ∈  DivRing )  →  𝑋  ≠   0  ) | 
						
							| 30 | 1 2 3 4 5 18 19 26 27 28 29 | 1arithufdlem4 | ⊢ ( ( 𝜑  ∧  ¬  𝑅  ∈  DivRing )  →  𝑋  ∈  { 𝑦  ∈  𝐵  ∣  ∃ 𝑓  ∈  Word  𝑃 𝑦  =  ( 𝑀  Σg  𝑓 ) } ) | 
						
							| 31 |  | eqeq1 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑦  =  ( 𝑀  Σg  𝑓 )  ↔  𝑋  =  ( 𝑀  Σg  𝑓 ) ) ) | 
						
							| 32 | 31 | rexbidv | ⊢ ( 𝑦  =  𝑋  →  ( ∃ 𝑓  ∈  Word  𝑃 𝑦  =  ( 𝑀  Σg  𝑓 )  ↔  ∃ 𝑓  ∈  Word  𝑃 𝑋  =  ( 𝑀  Σg  𝑓 ) ) ) | 
						
							| 33 | 32 | elrab | ⊢ ( 𝑋  ∈  { 𝑦  ∈  𝐵  ∣  ∃ 𝑓  ∈  Word  𝑃 𝑦  =  ( 𝑀  Σg  𝑓 ) }  ↔  ( 𝑋  ∈  𝐵  ∧  ∃ 𝑓  ∈  Word  𝑃 𝑋  =  ( 𝑀  Σg  𝑓 ) ) ) | 
						
							| 34 | 30 33 | sylib | ⊢ ( ( 𝜑  ∧  ¬  𝑅  ∈  DivRing )  →  ( 𝑋  ∈  𝐵  ∧  ∃ 𝑓  ∈  Word  𝑃 𝑋  =  ( 𝑀  Σg  𝑓 ) ) ) | 
						
							| 35 | 34 | simprd | ⊢ ( ( 𝜑  ∧  ¬  𝑅  ∈  DivRing )  →  ∃ 𝑓  ∈  Word  𝑃 𝑋  =  ( 𝑀  Σg  𝑓 ) ) | 
						
							| 36 | 17 35 | pm2.61dan | ⊢ ( 𝜑  →  ∃ 𝑓  ∈  Word  𝑃 𝑋  =  ( 𝑀  Σg  𝑓 ) ) |