Metamath Proof Explorer


Theorem 1arithufd

Description: Existence of a factorization into irreducible elements in a unique factorization domain. Any non-zero, non-unit element X of a UFD R can be written as a product of primes f . As shown in 1arithidom , that factorization is unique, up to the order of the factors and multiplication by units. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses 1arithufd.b 𝐵 = ( Base ‘ 𝑅 )
1arithufd.0 0 = ( 0g𝑅 )
1arithufd.u 𝑈 = ( Unit ‘ 𝑅 )
1arithufd.p 𝑃 = ( RPrime ‘ 𝑅 )
1arithufd.m 𝑀 = ( mulGrp ‘ 𝑅 )
1arithufd.r ( 𝜑𝑅 ∈ UFD )
1arithufd.x ( 𝜑𝑋𝐵 )
1arithufd.2 ( 𝜑 → ¬ 𝑋𝑈 )
1arithufd.3 ( 𝜑𝑋0 )
Assertion 1arithufd ( 𝜑 → ∃ 𝑓 ∈ Word 𝑃 𝑋 = ( 𝑀 Σg 𝑓 ) )

Proof

Step Hyp Ref Expression
1 1arithufd.b 𝐵 = ( Base ‘ 𝑅 )
2 1arithufd.0 0 = ( 0g𝑅 )
3 1arithufd.u 𝑈 = ( Unit ‘ 𝑅 )
4 1arithufd.p 𝑃 = ( RPrime ‘ 𝑅 )
5 1arithufd.m 𝑀 = ( mulGrp ‘ 𝑅 )
6 1arithufd.r ( 𝜑𝑅 ∈ UFD )
7 1arithufd.x ( 𝜑𝑋𝐵 )
8 1arithufd.2 ( 𝜑 → ¬ 𝑋𝑈 )
9 1arithufd.3 ( 𝜑𝑋0 )
10 simpr ( ( 𝜑𝑅 ∈ DivRing ) → 𝑅 ∈ DivRing )
11 7 adantr ( ( 𝜑𝑅 ∈ DivRing ) → 𝑋𝐵 )
12 9 adantr ( ( 𝜑𝑅 ∈ DivRing ) → 𝑋0 )
13 1 3 2 drngunit ( 𝑅 ∈ DivRing → ( 𝑋𝑈 ↔ ( 𝑋𝐵𝑋0 ) ) )
14 13 biimpar ( ( 𝑅 ∈ DivRing ∧ ( 𝑋𝐵𝑋0 ) ) → 𝑋𝑈 )
15 10 11 12 14 syl12anc ( ( 𝜑𝑅 ∈ DivRing ) → 𝑋𝑈 )
16 8 adantr ( ( 𝜑𝑅 ∈ DivRing ) → ¬ 𝑋𝑈 )
17 15 16 pm2.21dd ( ( 𝜑𝑅 ∈ DivRing ) → ∃ 𝑓 ∈ Word 𝑃 𝑋 = ( 𝑀 Σg 𝑓 ) )
18 6 adantr ( ( 𝜑 ∧ ¬ 𝑅 ∈ DivRing ) → 𝑅 ∈ UFD )
19 simpr ( ( 𝜑 ∧ ¬ 𝑅 ∈ DivRing ) → ¬ 𝑅 ∈ DivRing )
20 eqeq1 ( 𝑦 = 𝑥 → ( 𝑦 = ( 𝑀 Σg 𝑓 ) ↔ 𝑥 = ( 𝑀 Σg 𝑓 ) ) )
21 20 rexbidv ( 𝑦 = 𝑥 → ( ∃ 𝑓 ∈ Word 𝑃 𝑦 = ( 𝑀 Σg 𝑓 ) ↔ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) ) )
22 21 cbvrabv { 𝑦𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑦 = ( 𝑀 Σg 𝑓 ) } = { 𝑥𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) }
23 oveq2 ( 𝑓 = 𝑔 → ( 𝑀 Σg 𝑓 ) = ( 𝑀 Σg 𝑔 ) )
24 23 eqeq2d ( 𝑓 = 𝑔 → ( 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ 𝑥 = ( 𝑀 Σg 𝑔 ) ) )
25 24 cbvrexvw ( ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ ∃ 𝑔 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑔 ) )
26 22 25 rabbieq { 𝑦𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑦 = ( 𝑀 Σg 𝑓 ) } = { 𝑥𝐵 ∣ ∃ 𝑔 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑔 ) }
27 7 adantr ( ( 𝜑 ∧ ¬ 𝑅 ∈ DivRing ) → 𝑋𝐵 )
28 8 adantr ( ( 𝜑 ∧ ¬ 𝑅 ∈ DivRing ) → ¬ 𝑋𝑈 )
29 9 adantr ( ( 𝜑 ∧ ¬ 𝑅 ∈ DivRing ) → 𝑋0 )
30 1 2 3 4 5 18 19 26 27 28 29 1arithufdlem4 ( ( 𝜑 ∧ ¬ 𝑅 ∈ DivRing ) → 𝑋 ∈ { 𝑦𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑦 = ( 𝑀 Σg 𝑓 ) } )
31 eqeq1 ( 𝑦 = 𝑋 → ( 𝑦 = ( 𝑀 Σg 𝑓 ) ↔ 𝑋 = ( 𝑀 Σg 𝑓 ) ) )
32 31 rexbidv ( 𝑦 = 𝑋 → ( ∃ 𝑓 ∈ Word 𝑃 𝑦 = ( 𝑀 Σg 𝑓 ) ↔ ∃ 𝑓 ∈ Word 𝑃 𝑋 = ( 𝑀 Σg 𝑓 ) ) )
33 32 elrab ( 𝑋 ∈ { 𝑦𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑦 = ( 𝑀 Σg 𝑓 ) } ↔ ( 𝑋𝐵 ∧ ∃ 𝑓 ∈ Word 𝑃 𝑋 = ( 𝑀 Σg 𝑓 ) ) )
34 30 33 sylib ( ( 𝜑 ∧ ¬ 𝑅 ∈ DivRing ) → ( 𝑋𝐵 ∧ ∃ 𝑓 ∈ Word 𝑃 𝑋 = ( 𝑀 Σg 𝑓 ) ) )
35 34 simprd ( ( 𝜑 ∧ ¬ 𝑅 ∈ DivRing ) → ∃ 𝑓 ∈ Word 𝑃 𝑋 = ( 𝑀 Σg 𝑓 ) )
36 17 35 pm2.61dan ( 𝜑 → ∃ 𝑓 ∈ Word 𝑃 𝑋 = ( 𝑀 Σg 𝑓 ) )