| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1arithufd.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
1arithufd.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 3 |
|
1arithufd.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 4 |
|
1arithufd.p |
⊢ 𝑃 = ( RPrime ‘ 𝑅 ) |
| 5 |
|
1arithufd.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
| 6 |
|
1arithufd.r |
⊢ ( 𝜑 → 𝑅 ∈ UFD ) |
| 7 |
|
1arithufd.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 8 |
|
1arithufd.2 |
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑈 ) |
| 9 |
|
1arithufd.3 |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
| 10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ DivRing ) → 𝑅 ∈ DivRing ) |
| 11 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ DivRing ) → 𝑋 ∈ 𝐵 ) |
| 12 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ DivRing ) → 𝑋 ≠ 0 ) |
| 13 |
1 3 2
|
drngunit |
⊢ ( 𝑅 ∈ DivRing → ( 𝑋 ∈ 𝑈 ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) ) |
| 14 |
13
|
biimpar |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) → 𝑋 ∈ 𝑈 ) |
| 15 |
10 11 12 14
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ DivRing ) → 𝑋 ∈ 𝑈 ) |
| 16 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ DivRing ) → ¬ 𝑋 ∈ 𝑈 ) |
| 17 |
15 16
|
pm2.21dd |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ DivRing ) → ∃ 𝑓 ∈ Word 𝑃 𝑋 = ( 𝑀 Σg 𝑓 ) ) |
| 18 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ DivRing ) → 𝑅 ∈ UFD ) |
| 19 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ DivRing ) → ¬ 𝑅 ∈ DivRing ) |
| 20 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 = ( 𝑀 Σg 𝑓 ) ↔ 𝑥 = ( 𝑀 Σg 𝑓 ) ) ) |
| 21 |
20
|
rexbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑓 ∈ Word 𝑃 𝑦 = ( 𝑀 Σg 𝑓 ) ↔ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) ) ) |
| 22 |
21
|
cbvrabv |
⊢ { 𝑦 ∈ 𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑦 = ( 𝑀 Σg 𝑓 ) } = { 𝑥 ∈ 𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) } |
| 23 |
|
oveq2 |
⊢ ( 𝑓 = 𝑔 → ( 𝑀 Σg 𝑓 ) = ( 𝑀 Σg 𝑔 ) ) |
| 24 |
23
|
eqeq2d |
⊢ ( 𝑓 = 𝑔 → ( 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ 𝑥 = ( 𝑀 Σg 𝑔 ) ) ) |
| 25 |
24
|
cbvrexvw |
⊢ ( ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ ∃ 𝑔 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑔 ) ) |
| 26 |
22 25
|
rabbieq |
⊢ { 𝑦 ∈ 𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑦 = ( 𝑀 Σg 𝑓 ) } = { 𝑥 ∈ 𝐵 ∣ ∃ 𝑔 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑔 ) } |
| 27 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ DivRing ) → 𝑋 ∈ 𝐵 ) |
| 28 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ DivRing ) → ¬ 𝑋 ∈ 𝑈 ) |
| 29 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ DivRing ) → 𝑋 ≠ 0 ) |
| 30 |
1 2 3 4 5 18 19 26 27 28 29
|
1arithufdlem4 |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ DivRing ) → 𝑋 ∈ { 𝑦 ∈ 𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑦 = ( 𝑀 Σg 𝑓 ) } ) |
| 31 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑋 → ( 𝑦 = ( 𝑀 Σg 𝑓 ) ↔ 𝑋 = ( 𝑀 Σg 𝑓 ) ) ) |
| 32 |
31
|
rexbidv |
⊢ ( 𝑦 = 𝑋 → ( ∃ 𝑓 ∈ Word 𝑃 𝑦 = ( 𝑀 Σg 𝑓 ) ↔ ∃ 𝑓 ∈ Word 𝑃 𝑋 = ( 𝑀 Σg 𝑓 ) ) ) |
| 33 |
32
|
elrab |
⊢ ( 𝑋 ∈ { 𝑦 ∈ 𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑦 = ( 𝑀 Σg 𝑓 ) } ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑓 ∈ Word 𝑃 𝑋 = ( 𝑀 Σg 𝑓 ) ) ) |
| 34 |
30 33
|
sylib |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ DivRing ) → ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑓 ∈ Word 𝑃 𝑋 = ( 𝑀 Σg 𝑓 ) ) ) |
| 35 |
34
|
simprd |
⊢ ( ( 𝜑 ∧ ¬ 𝑅 ∈ DivRing ) → ∃ 𝑓 ∈ Word 𝑃 𝑋 = ( 𝑀 Σg 𝑓 ) ) |
| 36 |
17 35
|
pm2.61dan |
⊢ ( 𝜑 → ∃ 𝑓 ∈ Word 𝑃 𝑋 = ( 𝑀 Σg 𝑓 ) ) |