Metamath Proof Explorer


Theorem 1arithufdlem4

Description: Lemma for 1arithufd . Nonzero ring, non-field case. Those trivial cases are handled in the final proof. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses 1arithufd.b 𝐵 = ( Base ‘ 𝑅 )
1arithufd.0 0 = ( 0g𝑅 )
1arithufd.u 𝑈 = ( Unit ‘ 𝑅 )
1arithufd.p 𝑃 = ( RPrime ‘ 𝑅 )
1arithufd.m 𝑀 = ( mulGrp ‘ 𝑅 )
1arithufd.r ( 𝜑𝑅 ∈ UFD )
1arithufdlem.2 ( 𝜑 → ¬ 𝑅 ∈ DivRing )
1arithufdlem.s 𝑆 = { 𝑥𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) }
1arithufdlem.3 ( 𝜑𝑋𝐵 )
1arithufdlem.4 ( 𝜑 → ¬ 𝑋𝑈 )
1arithufdlem.5 ( 𝜑𝑋0 )
Assertion 1arithufdlem4 ( 𝜑𝑋𝑆 )

Proof

Step Hyp Ref Expression
1 1arithufd.b 𝐵 = ( Base ‘ 𝑅 )
2 1arithufd.0 0 = ( 0g𝑅 )
3 1arithufd.u 𝑈 = ( Unit ‘ 𝑅 )
4 1arithufd.p 𝑃 = ( RPrime ‘ 𝑅 )
5 1arithufd.m 𝑀 = ( mulGrp ‘ 𝑅 )
6 1arithufd.r ( 𝜑𝑅 ∈ UFD )
7 1arithufdlem.2 ( 𝜑 → ¬ 𝑅 ∈ DivRing )
8 1arithufdlem.s 𝑆 = { 𝑥𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) }
9 1arithufdlem.3 ( 𝜑𝑋𝐵 )
10 1arithufdlem.4 ( 𝜑 → ¬ 𝑋𝑈 )
11 1arithufdlem.5 ( 𝜑𝑋0 )
12 eqeq1 ( 𝑥 = 𝑎 → ( 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ 𝑎 = ( 𝑀 Σg 𝑓 ) ) )
13 12 rexbidv ( 𝑥 = 𝑎 → ( ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ ∃ 𝑓 ∈ Word 𝑃 𝑎 = ( 𝑀 Σg 𝑓 ) ) )
14 eqcom ( 𝑎 = ( 𝑀 Σg 𝑓 ) ↔ ( 𝑀 Σg 𝑓 ) = 𝑎 )
15 14 rexbii ( ∃ 𝑓 ∈ Word 𝑃 𝑎 = ( 𝑀 Σg 𝑓 ) ↔ ∃ 𝑓 ∈ Word 𝑃 ( 𝑀 Σg 𝑓 ) = 𝑎 )
16 13 15 bitrdi ( 𝑥 = 𝑎 → ( ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ ∃ 𝑓 ∈ Word 𝑃 ( 𝑀 Σg 𝑓 ) = 𝑎 ) )
17 6 adantr ( ( 𝜑𝑎𝑃 ) → 𝑅 ∈ UFD )
18 simpr ( ( 𝜑𝑎𝑃 ) → 𝑎𝑃 )
19 1 4 17 18 rprmcl ( ( 𝜑𝑎𝑃 ) → 𝑎𝐵 )
20 oveq2 ( 𝑓 = ⟨“ 𝑎 ”⟩ → ( 𝑀 Σg 𝑓 ) = ( 𝑀 Σg ⟨“ 𝑎 ”⟩ ) )
21 20 eqeq1d ( 𝑓 = ⟨“ 𝑎 ”⟩ → ( ( 𝑀 Σg 𝑓 ) = 𝑎 ↔ ( 𝑀 Σg ⟨“ 𝑎 ”⟩ ) = 𝑎 ) )
22 18 s1cld ( ( 𝜑𝑎𝑃 ) → ⟨“ 𝑎 ”⟩ ∈ Word 𝑃 )
23 5 1 mgpbas 𝐵 = ( Base ‘ 𝑀 )
24 23 gsumws1 ( 𝑎𝐵 → ( 𝑀 Σg ⟨“ 𝑎 ”⟩ ) = 𝑎 )
25 19 24 syl ( ( 𝜑𝑎𝑃 ) → ( 𝑀 Σg ⟨“ 𝑎 ”⟩ ) = 𝑎 )
26 21 22 25 rspcedvdw ( ( 𝜑𝑎𝑃 ) → ∃ 𝑓 ∈ Word 𝑃 ( 𝑀 Σg 𝑓 ) = 𝑎 )
27 16 19 26 elrabd ( ( 𝜑𝑎𝑃 ) → 𝑎 ∈ { 𝑥𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) } )
28 27 8 eleqtrrdi ( ( 𝜑𝑎𝑃 ) → 𝑎𝑆 )
29 28 ex ( 𝜑 → ( 𝑎𝑃𝑎𝑆 ) )
30 29 ssrdv ( 𝜑𝑃𝑆 )
31 30 adantr ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) → 𝑃𝑆 )
32 anass ( ( ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ↔ ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) ∧ ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ ( ( 𝑆𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ) )
33 ineq2 ( 𝑝 = 𝑖 → ( 𝑆𝑝 ) = ( 𝑆𝑖 ) )
34 33 eqeq1d ( 𝑝 = 𝑖 → ( ( 𝑆𝑝 ) = ∅ ↔ ( 𝑆𝑖 ) = ∅ ) )
35 sseq2 ( 𝑝 = 𝑖 → ( ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ↔ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) )
36 34 35 anbi12d ( 𝑝 = 𝑖 → ( ( ( 𝑆𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) ↔ ( ( 𝑆𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) )
37 36 elrab ( 𝑖 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ↔ ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ ( ( 𝑆𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) )
38 37 anbi2i ( ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) ∧ 𝑖 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ) ↔ ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) ∧ ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ ( ( 𝑆𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ) )
39 32 38 bitr4i ( ( ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ↔ ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) ∧ 𝑖 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ) )
40 39 anbi1i ( ( ( ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ↔ ( ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) ∧ 𝑖 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) )
41 incom ( 𝑖𝑆 ) = ( 𝑆𝑖 )
42 simpllr ( ( ( ( ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖𝑗 ) → ( ( 𝑆𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) )
43 42 simpld ( ( ( ( ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖𝑗 ) → ( 𝑆𝑖 ) = ∅ )
44 41 43 eqtrid ( ( ( ( ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖𝑗 ) → ( 𝑖𝑆 ) = ∅ )
45 6 ad5antr ( ( ( ( ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖𝑗 ) → 𝑅 ∈ UFD )
46 simplr ( ( ( ( ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖𝑗 ) → 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) )
47 42 simprd ( ( ( ( ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖𝑗 ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 )
48 6 ufdidom ( 𝜑𝑅 ∈ IDomn )
49 48 idomringd ( 𝜑𝑅 ∈ Ring )
50 eqid ( RSpan ‘ 𝑅 ) = ( RSpan ‘ 𝑅 )
51 1 50 rspsnid ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → 𝑋 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) )
52 49 9 51 syl2anc ( 𝜑𝑋 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) )
53 52 ad5antr ( ( ( ( ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖𝑗 ) → 𝑋 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) )
54 47 53 sseldd ( ( ( ( ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖𝑗 ) → 𝑋𝑖 )
55 nelsn ( 𝑋0 → ¬ 𝑋 ∈ { 0 } )
56 11 55 syl ( 𝜑 → ¬ 𝑋 ∈ { 0 } )
57 56 ad5antr ( ( ( ( ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖𝑗 ) → ¬ 𝑋 ∈ { 0 } )
58 nelne1 ( ( 𝑋𝑖 ∧ ¬ 𝑋 ∈ { 0 } ) → 𝑖 ≠ { 0 } )
59 54 57 58 syl2anc ( ( ( ( ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖𝑗 ) → 𝑖 ≠ { 0 } )
60 46 59 eldifsnd ( ( ( ( ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖𝑗 ) → 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { 0 } } ) )
61 ineq1 ( 𝑗 = 𝑖 → ( 𝑗𝑃 ) = ( 𝑖𝑃 ) )
62 61 neeq1d ( 𝑗 = 𝑖 → ( ( 𝑗𝑃 ) ≠ ∅ ↔ ( 𝑖𝑃 ) ≠ ∅ ) )
63 eqid ( PrmIdeal ‘ 𝑅 ) = ( PrmIdeal ‘ 𝑅 )
64 63 4 2 isufd ( 𝑅 ∈ UFD ↔ ( 𝑅 ∈ IDomn ∧ ∀ 𝑗 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { 0 } } ) ( 𝑗𝑃 ) ≠ ∅ ) )
65 64 simprbi ( 𝑅 ∈ UFD → ∀ 𝑗 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { 0 } } ) ( 𝑗𝑃 ) ≠ ∅ )
66 65 adantr ( ( 𝑅 ∈ UFD ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { 0 } } ) ) → ∀ 𝑗 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { 0 } } ) ( 𝑗𝑃 ) ≠ ∅ )
67 simpr ( ( 𝑅 ∈ UFD ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { 0 } } ) ) → 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { 0 } } ) )
68 62 66 67 rspcdva ( ( 𝑅 ∈ UFD ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { 0 } } ) ) → ( 𝑖𝑃 ) ≠ ∅ )
69 45 60 68 syl2anc ( ( ( ( ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖𝑗 ) → ( 𝑖𝑃 ) ≠ ∅ )
70 sseq0 ( ( ( 𝑖𝑃 ) ⊆ ( 𝑖𝑆 ) ∧ ( 𝑖𝑆 ) = ∅ ) → ( 𝑖𝑃 ) = ∅ )
71 70 expcom ( ( 𝑖𝑆 ) = ∅ → ( ( 𝑖𝑃 ) ⊆ ( 𝑖𝑆 ) → ( 𝑖𝑃 ) = ∅ ) )
72 71 necon3ad ( ( 𝑖𝑆 ) = ∅ → ( ( 𝑖𝑃 ) ≠ ∅ → ¬ ( 𝑖𝑃 ) ⊆ ( 𝑖𝑆 ) ) )
73 sslin ( 𝑃𝑆 → ( 𝑖𝑃 ) ⊆ ( 𝑖𝑆 ) )
74 73 con3i ( ¬ ( 𝑖𝑃 ) ⊆ ( 𝑖𝑆 ) → ¬ 𝑃𝑆 )
75 72 74 syl6 ( ( 𝑖𝑆 ) = ∅ → ( ( 𝑖𝑃 ) ≠ ∅ → ¬ 𝑃𝑆 ) )
76 44 69 75 sylc ( ( ( ( ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖𝑗 ) → ¬ 𝑃𝑆 )
77 40 76 sylanbr ( ( ( ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) ∧ 𝑖 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖𝑗 ) → ¬ 𝑃𝑆 )
78 77 anasss ( ( ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) ∧ 𝑖 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ) ∧ ( 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖𝑗 ) ) → ¬ 𝑃𝑆 )
79 48 idomcringd ( 𝜑𝑅 ∈ CRing )
80 79 adantr ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) → 𝑅 ∈ CRing )
81 49 adantr ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) → 𝑅 ∈ Ring )
82 9 adantr ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) → 𝑋𝐵 )
83 82 snssd ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) → { 𝑋 } ⊆ 𝐵 )
84 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
85 50 1 84 rspcl ( ( 𝑅 ∈ Ring ∧ { 𝑋 } ⊆ 𝐵 ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ∈ ( LIdeal ‘ 𝑅 ) )
86 81 83 85 syl2anc ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ∈ ( LIdeal ‘ 𝑅 ) )
87 5 ringmgp ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd )
88 49 87 syl ( 𝜑𝑀 ∈ Mnd )
89 8 ssrab3 𝑆𝐵
90 89 a1i ( 𝜑𝑆𝐵 )
91 eqeq1 ( 𝑥 = ( 1r𝑅 ) → ( 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ ( 1r𝑅 ) = ( 𝑀 Σg 𝑓 ) ) )
92 91 rexbidv ( 𝑥 = ( 1r𝑅 ) → ( ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ ∃ 𝑓 ∈ Word 𝑃 ( 1r𝑅 ) = ( 𝑀 Σg 𝑓 ) ) )
93 eqcom ( ( 1r𝑅 ) = ( 𝑀 Σg 𝑓 ) ↔ ( 𝑀 Σg 𝑓 ) = ( 1r𝑅 ) )
94 93 rexbii ( ∃ 𝑓 ∈ Word 𝑃 ( 1r𝑅 ) = ( 𝑀 Σg 𝑓 ) ↔ ∃ 𝑓 ∈ Word 𝑃 ( 𝑀 Σg 𝑓 ) = ( 1r𝑅 ) )
95 92 94 bitrdi ( 𝑥 = ( 1r𝑅 ) → ( ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ ∃ 𝑓 ∈ Word 𝑃 ( 𝑀 Σg 𝑓 ) = ( 1r𝑅 ) ) )
96 eqid ( 1r𝑅 ) = ( 1r𝑅 )
97 1 96 ringidcl ( 𝑅 ∈ Ring → ( 1r𝑅 ) ∈ 𝐵 )
98 49 97 syl ( 𝜑 → ( 1r𝑅 ) ∈ 𝐵 )
99 oveq2 ( 𝑓 = ∅ → ( 𝑀 Σg 𝑓 ) = ( 𝑀 Σg ∅ ) )
100 99 eqeq1d ( 𝑓 = ∅ → ( ( 𝑀 Σg 𝑓 ) = ( 1r𝑅 ) ↔ ( 𝑀 Σg ∅ ) = ( 1r𝑅 ) ) )
101 wrd0 ∅ ∈ Word 𝑃
102 101 a1i ( 𝜑 → ∅ ∈ Word 𝑃 )
103 5 96 ringidval ( 1r𝑅 ) = ( 0g𝑀 )
104 103 gsum0 ( 𝑀 Σg ∅ ) = ( 1r𝑅 )
105 104 a1i ( 𝜑 → ( 𝑀 Σg ∅ ) = ( 1r𝑅 ) )
106 100 102 105 rspcedvdw ( 𝜑 → ∃ 𝑓 ∈ Word 𝑃 ( 𝑀 Σg 𝑓 ) = ( 1r𝑅 ) )
107 95 98 106 elrabd ( 𝜑 → ( 1r𝑅 ) ∈ { 𝑥𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) } )
108 107 8 eleqtrrdi ( 𝜑 → ( 1r𝑅 ) ∈ 𝑆 )
109 6 ad2antrr ( ( ( 𝜑𝑎𝑆 ) ∧ 𝑏𝑆 ) → 𝑅 ∈ UFD )
110 7 ad2antrr ( ( ( 𝜑𝑎𝑆 ) ∧ 𝑏𝑆 ) → ¬ 𝑅 ∈ DivRing )
111 eqid ( .r𝑅 ) = ( .r𝑅 )
112 simplr ( ( ( 𝜑𝑎𝑆 ) ∧ 𝑏𝑆 ) → 𝑎𝑆 )
113 simpr ( ( ( 𝜑𝑎𝑆 ) ∧ 𝑏𝑆 ) → 𝑏𝑆 )
114 1 2 3 4 5 109 110 8 111 112 113 1arithufdlem2 ( ( ( 𝜑𝑎𝑆 ) ∧ 𝑏𝑆 ) → ( 𝑎 ( .r𝑅 ) 𝑏 ) ∈ 𝑆 )
115 114 anasss ( ( 𝜑 ∧ ( 𝑎𝑆𝑏𝑆 ) ) → ( 𝑎 ( .r𝑅 ) 𝑏 ) ∈ 𝑆 )
116 115 ralrimivva ( 𝜑 → ∀ 𝑎𝑆𝑏𝑆 ( 𝑎 ( .r𝑅 ) 𝑏 ) ∈ 𝑆 )
117 5 111 mgpplusg ( .r𝑅 ) = ( +g𝑀 )
118 23 103 117 issubm ( 𝑀 ∈ Mnd → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑆𝐵 ∧ ( 1r𝑅 ) ∈ 𝑆 ∧ ∀ 𝑎𝑆𝑏𝑆 ( 𝑎 ( .r𝑅 ) 𝑏 ) ∈ 𝑆 ) ) )
119 118 biimpar ( ( 𝑀 ∈ Mnd ∧ ( 𝑆𝐵 ∧ ( 1r𝑅 ) ∈ 𝑆 ∧ ∀ 𝑎𝑆𝑏𝑆 ( 𝑎 ( .r𝑅 ) 𝑏 ) ∈ 𝑆 ) ) → 𝑆 ∈ ( SubMnd ‘ 𝑀 ) )
120 88 90 108 116 119 syl13anc ( 𝜑𝑆 ∈ ( SubMnd ‘ 𝑀 ) )
121 120 adantr ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) → 𝑆 ∈ ( SubMnd ‘ 𝑀 ) )
122 neq0 ( ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ↔ ∃ 𝑢 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) )
123 122 biimpi ( ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ → ∃ 𝑢 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) )
124 123 adantl ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) → ∃ 𝑢 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) )
125 6 ad4antr ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) ∧ 𝑦𝐵 ) ∧ 𝑢 = ( 𝑦 ( .r𝑅 ) 𝑋 ) ) → 𝑅 ∈ UFD )
126 7 ad4antr ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) ∧ 𝑦𝐵 ) ∧ 𝑢 = ( 𝑦 ( .r𝑅 ) 𝑋 ) ) → ¬ 𝑅 ∈ DivRing )
127 9 ad4antr ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) ∧ 𝑦𝐵 ) ∧ 𝑢 = ( 𝑦 ( .r𝑅 ) 𝑋 ) ) → 𝑋𝐵 )
128 10 ad4antr ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) ∧ 𝑦𝐵 ) ∧ 𝑢 = ( 𝑦 ( .r𝑅 ) 𝑋 ) ) → ¬ 𝑋𝑈 )
129 11 ad4antr ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) ∧ 𝑦𝐵 ) ∧ 𝑢 = ( 𝑦 ( .r𝑅 ) 𝑋 ) ) → 𝑋0 )
130 simplr ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) ∧ 𝑦𝐵 ) ∧ 𝑢 = ( 𝑦 ( .r𝑅 ) 𝑋 ) ) → 𝑦𝐵 )
131 simpr ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) ∧ 𝑦𝐵 ) ∧ 𝑢 = ( 𝑦 ( .r𝑅 ) 𝑋 ) ) → 𝑢 = ( 𝑦 ( .r𝑅 ) 𝑋 ) )
132 simpllr ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) ∧ 𝑦𝐵 ) ∧ 𝑢 = ( 𝑦 ( .r𝑅 ) 𝑋 ) ) → 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) )
133 132 elin1d ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) ∧ 𝑦𝐵 ) ∧ 𝑢 = ( 𝑦 ( .r𝑅 ) 𝑋 ) ) → 𝑢𝑆 )
134 131 133 eqeltrrd ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) ∧ 𝑦𝐵 ) ∧ 𝑢 = ( 𝑦 ( .r𝑅 ) 𝑋 ) ) → ( 𝑦 ( .r𝑅 ) 𝑋 ) ∈ 𝑆 )
135 1 2 3 4 5 125 126 8 127 128 129 111 130 134 1arithufdlem3 ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) ∧ 𝑦𝐵 ) ∧ 𝑢 = ( 𝑦 ( .r𝑅 ) 𝑋 ) ) → 𝑋𝑆 )
136 49 ad2antrr ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) → 𝑅 ∈ Ring )
137 9 ad2antrr ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) → 𝑋𝐵 )
138 simpr ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) → 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) )
139 138 elin2d ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) → 𝑢 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) )
140 1 111 50 elrspsn ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) → ( 𝑢 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ↔ ∃ 𝑦𝐵 𝑢 = ( 𝑦 ( .r𝑅 ) 𝑋 ) ) )
141 140 biimpa ( ( ( 𝑅 ∈ Ring ∧ 𝑋𝐵 ) ∧ 𝑢 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) → ∃ 𝑦𝐵 𝑢 = ( 𝑦 ( .r𝑅 ) 𝑋 ) )
142 136 137 139 141 syl21anc ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) → ∃ 𝑦𝐵 𝑢 = ( 𝑦 ( .r𝑅 ) 𝑋 ) )
143 135 142 r19.29a ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) → 𝑋𝑆 )
144 124 143 exlimddv ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) → 𝑋𝑆 )
145 144 adantlr ( ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) → 𝑋𝑆 )
146 simplr ( ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) → ¬ 𝑋𝑆 )
147 145 146 condan ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) → ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ )
148 eqid { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } = { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) }
149 1 80 86 121 5 147 148 ssdifidlprm ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) → ∃ 𝑖 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ( 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖𝑗 ) )
150 78 149 r19.29a ( ( 𝜑 ∧ ¬ 𝑋𝑆 ) → ¬ 𝑃𝑆 )
151 31 150 condan ( 𝜑𝑋𝑆 )