| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1arithufd.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
1arithufd.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 3 |
|
1arithufd.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 4 |
|
1arithufd.p |
⊢ 𝑃 = ( RPrime ‘ 𝑅 ) |
| 5 |
|
1arithufd.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
| 6 |
|
1arithufd.r |
⊢ ( 𝜑 → 𝑅 ∈ UFD ) |
| 7 |
|
1arithufdlem.2 |
⊢ ( 𝜑 → ¬ 𝑅 ∈ DivRing ) |
| 8 |
|
1arithufdlem.s |
⊢ 𝑆 = { 𝑥 ∈ 𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) } |
| 9 |
|
1arithufdlem.3 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 10 |
|
1arithufdlem.4 |
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑈 ) |
| 11 |
|
1arithufdlem.5 |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
| 12 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ 𝑎 = ( 𝑀 Σg 𝑓 ) ) ) |
| 13 |
12
|
rexbidv |
⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ ∃ 𝑓 ∈ Word 𝑃 𝑎 = ( 𝑀 Σg 𝑓 ) ) ) |
| 14 |
|
eqcom |
⊢ ( 𝑎 = ( 𝑀 Σg 𝑓 ) ↔ ( 𝑀 Σg 𝑓 ) = 𝑎 ) |
| 15 |
14
|
rexbii |
⊢ ( ∃ 𝑓 ∈ Word 𝑃 𝑎 = ( 𝑀 Σg 𝑓 ) ↔ ∃ 𝑓 ∈ Word 𝑃 ( 𝑀 Σg 𝑓 ) = 𝑎 ) |
| 16 |
13 15
|
bitrdi |
⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ ∃ 𝑓 ∈ Word 𝑃 ( 𝑀 Σg 𝑓 ) = 𝑎 ) ) |
| 17 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → 𝑅 ∈ UFD ) |
| 18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → 𝑎 ∈ 𝑃 ) |
| 19 |
1 4 17 18
|
rprmcl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → 𝑎 ∈ 𝐵 ) |
| 20 |
|
oveq2 |
⊢ ( 𝑓 = 〈“ 𝑎 ”〉 → ( 𝑀 Σg 𝑓 ) = ( 𝑀 Σg 〈“ 𝑎 ”〉 ) ) |
| 21 |
20
|
eqeq1d |
⊢ ( 𝑓 = 〈“ 𝑎 ”〉 → ( ( 𝑀 Σg 𝑓 ) = 𝑎 ↔ ( 𝑀 Σg 〈“ 𝑎 ”〉 ) = 𝑎 ) ) |
| 22 |
18
|
s1cld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → 〈“ 𝑎 ”〉 ∈ Word 𝑃 ) |
| 23 |
5 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 24 |
23
|
gsumws1 |
⊢ ( 𝑎 ∈ 𝐵 → ( 𝑀 Σg 〈“ 𝑎 ”〉 ) = 𝑎 ) |
| 25 |
19 24
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → ( 𝑀 Σg 〈“ 𝑎 ”〉 ) = 𝑎 ) |
| 26 |
21 22 25
|
rspcedvdw |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → ∃ 𝑓 ∈ Word 𝑃 ( 𝑀 Σg 𝑓 ) = 𝑎 ) |
| 27 |
16 19 26
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → 𝑎 ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) } ) |
| 28 |
27 8
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → 𝑎 ∈ 𝑆 ) |
| 29 |
28
|
ex |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝑃 → 𝑎 ∈ 𝑆 ) ) |
| 30 |
29
|
ssrdv |
⊢ ( 𝜑 → 𝑃 ⊆ 𝑆 ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) → 𝑃 ⊆ 𝑆 ) |
| 32 |
|
anass |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆 ∩ 𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ↔ ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ ( ( 𝑆 ∩ 𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ) ) |
| 33 |
|
ineq2 |
⊢ ( 𝑝 = 𝑖 → ( 𝑆 ∩ 𝑝 ) = ( 𝑆 ∩ 𝑖 ) ) |
| 34 |
33
|
eqeq1d |
⊢ ( 𝑝 = 𝑖 → ( ( 𝑆 ∩ 𝑝 ) = ∅ ↔ ( 𝑆 ∩ 𝑖 ) = ∅ ) ) |
| 35 |
|
sseq2 |
⊢ ( 𝑝 = 𝑖 → ( ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ↔ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) |
| 36 |
34 35
|
anbi12d |
⊢ ( 𝑝 = 𝑖 → ( ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) ↔ ( ( 𝑆 ∩ 𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ) |
| 37 |
36
|
elrab |
⊢ ( 𝑖 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ↔ ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ ( ( 𝑆 ∩ 𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ) |
| 38 |
37
|
anbi2i |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑖 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ) ↔ ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ ( 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∧ ( ( 𝑆 ∩ 𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ) ) |
| 39 |
32 38
|
bitr4i |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆 ∩ 𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ↔ ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑖 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ) ) |
| 40 |
39
|
anbi1i |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆 ∩ 𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ↔ ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑖 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ) |
| 41 |
|
incom |
⊢ ( 𝑖 ∩ 𝑆 ) = ( 𝑆 ∩ 𝑖 ) |
| 42 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆 ∩ 𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖 ⊊ 𝑗 ) → ( ( 𝑆 ∩ 𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) |
| 43 |
42
|
simpld |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆 ∩ 𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖 ⊊ 𝑗 ) → ( 𝑆 ∩ 𝑖 ) = ∅ ) |
| 44 |
41 43
|
eqtrid |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆 ∩ 𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖 ⊊ 𝑗 ) → ( 𝑖 ∩ 𝑆 ) = ∅ ) |
| 45 |
6
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆 ∩ 𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖 ⊊ 𝑗 ) → 𝑅 ∈ UFD ) |
| 46 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆 ∩ 𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖 ⊊ 𝑗 ) → 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) |
| 47 |
42
|
simprd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆 ∩ 𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖 ⊊ 𝑗 ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) |
| 48 |
6
|
ufdidom |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
| 49 |
48
|
idomringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 50 |
|
eqid |
⊢ ( RSpan ‘ 𝑅 ) = ( RSpan ‘ 𝑅 ) |
| 51 |
1 50
|
rspsnid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) |
| 52 |
49 9 51
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) |
| 53 |
52
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆 ∩ 𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖 ⊊ 𝑗 ) → 𝑋 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) |
| 54 |
47 53
|
sseldd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆 ∩ 𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖 ⊊ 𝑗 ) → 𝑋 ∈ 𝑖 ) |
| 55 |
|
nelsn |
⊢ ( 𝑋 ≠ 0 → ¬ 𝑋 ∈ { 0 } ) |
| 56 |
11 55
|
syl |
⊢ ( 𝜑 → ¬ 𝑋 ∈ { 0 } ) |
| 57 |
56
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆 ∩ 𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖 ⊊ 𝑗 ) → ¬ 𝑋 ∈ { 0 } ) |
| 58 |
|
nelne1 |
⊢ ( ( 𝑋 ∈ 𝑖 ∧ ¬ 𝑋 ∈ { 0 } ) → 𝑖 ≠ { 0 } ) |
| 59 |
54 57 58
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆 ∩ 𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖 ⊊ 𝑗 ) → 𝑖 ≠ { 0 } ) |
| 60 |
46 59
|
eldifsnd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆 ∩ 𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖 ⊊ 𝑗 ) → 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { 0 } } ) ) |
| 61 |
|
ineq1 |
⊢ ( 𝑗 = 𝑖 → ( 𝑗 ∩ 𝑃 ) = ( 𝑖 ∩ 𝑃 ) ) |
| 62 |
61
|
neeq1d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑗 ∩ 𝑃 ) ≠ ∅ ↔ ( 𝑖 ∩ 𝑃 ) ≠ ∅ ) ) |
| 63 |
|
eqid |
⊢ ( PrmIdeal ‘ 𝑅 ) = ( PrmIdeal ‘ 𝑅 ) |
| 64 |
63 4 2
|
isufd |
⊢ ( 𝑅 ∈ UFD ↔ ( 𝑅 ∈ IDomn ∧ ∀ 𝑗 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { 0 } } ) ( 𝑗 ∩ 𝑃 ) ≠ ∅ ) ) |
| 65 |
64
|
simprbi |
⊢ ( 𝑅 ∈ UFD → ∀ 𝑗 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { 0 } } ) ( 𝑗 ∩ 𝑃 ) ≠ ∅ ) |
| 66 |
65
|
adantr |
⊢ ( ( 𝑅 ∈ UFD ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { 0 } } ) ) → ∀ 𝑗 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { 0 } } ) ( 𝑗 ∩ 𝑃 ) ≠ ∅ ) |
| 67 |
|
simpr |
⊢ ( ( 𝑅 ∈ UFD ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { 0 } } ) ) → 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { 0 } } ) ) |
| 68 |
62 66 67
|
rspcdva |
⊢ ( ( 𝑅 ∈ UFD ∧ 𝑖 ∈ ( ( PrmIdeal ‘ 𝑅 ) ∖ { { 0 } } ) ) → ( 𝑖 ∩ 𝑃 ) ≠ ∅ ) |
| 69 |
45 60 68
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆 ∩ 𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖 ⊊ 𝑗 ) → ( 𝑖 ∩ 𝑃 ) ≠ ∅ ) |
| 70 |
|
sseq0 |
⊢ ( ( ( 𝑖 ∩ 𝑃 ) ⊆ ( 𝑖 ∩ 𝑆 ) ∧ ( 𝑖 ∩ 𝑆 ) = ∅ ) → ( 𝑖 ∩ 𝑃 ) = ∅ ) |
| 71 |
70
|
expcom |
⊢ ( ( 𝑖 ∩ 𝑆 ) = ∅ → ( ( 𝑖 ∩ 𝑃 ) ⊆ ( 𝑖 ∩ 𝑆 ) → ( 𝑖 ∩ 𝑃 ) = ∅ ) ) |
| 72 |
71
|
necon3ad |
⊢ ( ( 𝑖 ∩ 𝑆 ) = ∅ → ( ( 𝑖 ∩ 𝑃 ) ≠ ∅ → ¬ ( 𝑖 ∩ 𝑃 ) ⊆ ( 𝑖 ∩ 𝑆 ) ) ) |
| 73 |
|
sslin |
⊢ ( 𝑃 ⊆ 𝑆 → ( 𝑖 ∩ 𝑃 ) ⊆ ( 𝑖 ∩ 𝑆 ) ) |
| 74 |
73
|
con3i |
⊢ ( ¬ ( 𝑖 ∩ 𝑃 ) ⊆ ( 𝑖 ∩ 𝑆 ) → ¬ 𝑃 ⊆ 𝑆 ) |
| 75 |
72 74
|
syl6 |
⊢ ( ( 𝑖 ∩ 𝑆 ) = ∅ → ( ( 𝑖 ∩ 𝑃 ) ≠ ∅ → ¬ 𝑃 ⊆ 𝑆 ) ) |
| 76 |
44 69 75
|
sylc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑆 ∩ 𝑖 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑖 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖 ⊊ 𝑗 ) → ¬ 𝑃 ⊆ 𝑆 ) |
| 77 |
40 76
|
sylanbr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑖 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖 ⊊ 𝑗 ) → ¬ 𝑃 ⊆ 𝑆 ) |
| 78 |
77
|
anasss |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ 𝑖 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ) ∧ ( 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖 ⊊ 𝑗 ) ) → ¬ 𝑃 ⊆ 𝑆 ) |
| 79 |
48
|
idomcringd |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 80 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) → 𝑅 ∈ CRing ) |
| 81 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) → 𝑅 ∈ Ring ) |
| 82 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝐵 ) |
| 83 |
82
|
snssd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) → { 𝑋 } ⊆ 𝐵 ) |
| 84 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 85 |
50 1 84
|
rspcl |
⊢ ( ( 𝑅 ∈ Ring ∧ { 𝑋 } ⊆ 𝐵 ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ∈ ( LIdeal ‘ 𝑅 ) ) |
| 86 |
81 83 85
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ∈ ( LIdeal ‘ 𝑅 ) ) |
| 87 |
5
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd ) |
| 88 |
49 87
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
| 89 |
8
|
ssrab3 |
⊢ 𝑆 ⊆ 𝐵 |
| 90 |
89
|
a1i |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
| 91 |
|
eqeq1 |
⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → ( 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ ( 1r ‘ 𝑅 ) = ( 𝑀 Σg 𝑓 ) ) ) |
| 92 |
91
|
rexbidv |
⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → ( ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ ∃ 𝑓 ∈ Word 𝑃 ( 1r ‘ 𝑅 ) = ( 𝑀 Σg 𝑓 ) ) ) |
| 93 |
|
eqcom |
⊢ ( ( 1r ‘ 𝑅 ) = ( 𝑀 Σg 𝑓 ) ↔ ( 𝑀 Σg 𝑓 ) = ( 1r ‘ 𝑅 ) ) |
| 94 |
93
|
rexbii |
⊢ ( ∃ 𝑓 ∈ Word 𝑃 ( 1r ‘ 𝑅 ) = ( 𝑀 Σg 𝑓 ) ↔ ∃ 𝑓 ∈ Word 𝑃 ( 𝑀 Σg 𝑓 ) = ( 1r ‘ 𝑅 ) ) |
| 95 |
92 94
|
bitrdi |
⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → ( ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ ∃ 𝑓 ∈ Word 𝑃 ( 𝑀 Σg 𝑓 ) = ( 1r ‘ 𝑅 ) ) ) |
| 96 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 97 |
1 96
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 98 |
49 97
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
| 99 |
|
oveq2 |
⊢ ( 𝑓 = ∅ → ( 𝑀 Σg 𝑓 ) = ( 𝑀 Σg ∅ ) ) |
| 100 |
99
|
eqeq1d |
⊢ ( 𝑓 = ∅ → ( ( 𝑀 Σg 𝑓 ) = ( 1r ‘ 𝑅 ) ↔ ( 𝑀 Σg ∅ ) = ( 1r ‘ 𝑅 ) ) ) |
| 101 |
|
wrd0 |
⊢ ∅ ∈ Word 𝑃 |
| 102 |
101
|
a1i |
⊢ ( 𝜑 → ∅ ∈ Word 𝑃 ) |
| 103 |
5 96
|
ringidval |
⊢ ( 1r ‘ 𝑅 ) = ( 0g ‘ 𝑀 ) |
| 104 |
103
|
gsum0 |
⊢ ( 𝑀 Σg ∅ ) = ( 1r ‘ 𝑅 ) |
| 105 |
104
|
a1i |
⊢ ( 𝜑 → ( 𝑀 Σg ∅ ) = ( 1r ‘ 𝑅 ) ) |
| 106 |
100 102 105
|
rspcedvdw |
⊢ ( 𝜑 → ∃ 𝑓 ∈ Word 𝑃 ( 𝑀 Σg 𝑓 ) = ( 1r ‘ 𝑅 ) ) |
| 107 |
95 98 106
|
elrabd |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) } ) |
| 108 |
107 8
|
eleqtrrdi |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝑆 ) |
| 109 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑏 ∈ 𝑆 ) → 𝑅 ∈ UFD ) |
| 110 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑏 ∈ 𝑆 ) → ¬ 𝑅 ∈ DivRing ) |
| 111 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 112 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑏 ∈ 𝑆 ) → 𝑎 ∈ 𝑆 ) |
| 113 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑏 ∈ 𝑆 ) → 𝑏 ∈ 𝑆 ) |
| 114 |
1 2 3 4 5 109 110 8 111 112 113
|
1arithufdlem2 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ 𝑏 ∈ 𝑆 ) → ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ∈ 𝑆 ) |
| 115 |
114
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ∈ 𝑆 ) |
| 116 |
115
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑆 ∀ 𝑏 ∈ 𝑆 ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ∈ 𝑆 ) |
| 117 |
5 111
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) |
| 118 |
23 103 117
|
issubm |
⊢ ( 𝑀 ∈ Mnd → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ ( 1r ‘ 𝑅 ) ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝑆 ∀ 𝑏 ∈ 𝑆 ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ∈ 𝑆 ) ) ) |
| 119 |
118
|
biimpar |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑆 ⊆ 𝐵 ∧ ( 1r ‘ 𝑅 ) ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝑆 ∀ 𝑏 ∈ 𝑆 ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ∈ 𝑆 ) ) → 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ) |
| 120 |
88 90 108 116 119
|
syl13anc |
⊢ ( 𝜑 → 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ) |
| 121 |
120
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) → 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ) |
| 122 |
|
neq0 |
⊢ ( ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ↔ ∃ 𝑢 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) |
| 123 |
122
|
biimpi |
⊢ ( ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ → ∃ 𝑢 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) |
| 124 |
123
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) → ∃ 𝑢 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) |
| 125 |
6
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) → 𝑅 ∈ UFD ) |
| 126 |
7
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) → ¬ 𝑅 ∈ DivRing ) |
| 127 |
9
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) → 𝑋 ∈ 𝐵 ) |
| 128 |
10
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) → ¬ 𝑋 ∈ 𝑈 ) |
| 129 |
11
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) → 𝑋 ≠ 0 ) |
| 130 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) → 𝑦 ∈ 𝐵 ) |
| 131 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) → 𝑢 = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) |
| 132 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) → 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) |
| 133 |
132
|
elin1d |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) → 𝑢 ∈ 𝑆 ) |
| 134 |
131 133
|
eqeltrrd |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ∈ 𝑆 ) |
| 135 |
1 2 3 4 5 125 126 8 127 128 129 111 130 134
|
1arithufdlem3 |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) → 𝑋 ∈ 𝑆 ) |
| 136 |
49
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) → 𝑅 ∈ Ring ) |
| 137 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) → 𝑋 ∈ 𝐵 ) |
| 138 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) → 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) |
| 139 |
138
|
elin2d |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) → 𝑢 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) |
| 140 |
1 111 50
|
elrspsn |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑢 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ↔ ∃ 𝑦 ∈ 𝐵 𝑢 = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) ) |
| 141 |
140
|
biimpa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑢 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) → ∃ 𝑦 ∈ 𝐵 𝑢 = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) |
| 142 |
136 137 139 141
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) → ∃ 𝑦 ∈ 𝐵 𝑢 = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) |
| 143 |
135 142
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) ∧ 𝑢 ∈ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) ) → 𝑋 ∈ 𝑆 ) |
| 144 |
124 143
|
exlimddv |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) → 𝑋 ∈ 𝑆 ) |
| 145 |
144
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) → 𝑋 ∈ 𝑆 ) |
| 146 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) ∧ ¬ ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) → ¬ 𝑋 ∈ 𝑆 ) |
| 147 |
145 146
|
condan |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) → ( 𝑆 ∩ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ) = ∅ ) |
| 148 |
|
eqid |
⊢ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } = { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } |
| 149 |
1 80 86 121 5 147 148
|
ssdifidlprm |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) → ∃ 𝑖 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ( 𝑖 ∈ ( PrmIdeal ‘ 𝑅 ) ∧ ∀ 𝑗 ∈ { 𝑝 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( ( 𝑆 ∩ 𝑝 ) = ∅ ∧ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑋 } ) ⊆ 𝑝 ) } ¬ 𝑖 ⊊ 𝑗 ) ) |
| 150 |
78 149
|
r19.29a |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 ∈ 𝑆 ) → ¬ 𝑃 ⊆ 𝑆 ) |
| 151 |
31 150
|
condan |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |