| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1arithufd.b |
|
| 2 |
|
1arithufd.0 |
|
| 3 |
|
1arithufd.u |
|
| 4 |
|
1arithufd.p |
|
| 5 |
|
1arithufd.m |
|
| 6 |
|
1arithufd.r |
|
| 7 |
|
1arithufdlem.2 |
|
| 8 |
|
1arithufdlem.s |
|
| 9 |
|
1arithufdlem.3 |
|
| 10 |
|
1arithufdlem.4 |
|
| 11 |
|
1arithufdlem.5 |
|
| 12 |
|
eqeq1 |
|
| 13 |
12
|
rexbidv |
|
| 14 |
|
eqcom |
|
| 15 |
14
|
rexbii |
|
| 16 |
13 15
|
bitrdi |
|
| 17 |
6
|
adantr |
|
| 18 |
|
simpr |
|
| 19 |
1 4 17 18
|
rprmcl |
|
| 20 |
|
oveq2 |
|
| 21 |
20
|
eqeq1d |
|
| 22 |
18
|
s1cld |
|
| 23 |
5 1
|
mgpbas |
|
| 24 |
23
|
gsumws1 |
|
| 25 |
19 24
|
syl |
|
| 26 |
21 22 25
|
rspcedvdw |
|
| 27 |
16 19 26
|
elrabd |
|
| 28 |
27 8
|
eleqtrrdi |
|
| 29 |
28
|
ex |
|
| 30 |
29
|
ssrdv |
|
| 31 |
30
|
adantr |
|
| 32 |
|
anass |
|
| 33 |
|
ineq2 |
|
| 34 |
33
|
eqeq1d |
|
| 35 |
|
sseq2 |
|
| 36 |
34 35
|
anbi12d |
|
| 37 |
36
|
elrab |
|
| 38 |
37
|
anbi2i |
|
| 39 |
32 38
|
bitr4i |
|
| 40 |
39
|
anbi1i |
|
| 41 |
|
incom |
|
| 42 |
|
simpllr |
|
| 43 |
42
|
simpld |
|
| 44 |
41 43
|
eqtrid |
|
| 45 |
6
|
ad5antr |
|
| 46 |
|
simplr |
|
| 47 |
42
|
simprd |
|
| 48 |
6
|
ufdidom |
|
| 49 |
48
|
idomringd |
|
| 50 |
|
eqid |
|
| 51 |
1 50
|
rspsnid |
|
| 52 |
49 9 51
|
syl2anc |
|
| 53 |
52
|
ad5antr |
|
| 54 |
47 53
|
sseldd |
|
| 55 |
|
nelsn |
|
| 56 |
11 55
|
syl |
|
| 57 |
56
|
ad5antr |
|
| 58 |
|
nelne1 |
|
| 59 |
54 57 58
|
syl2anc |
|
| 60 |
46 59
|
eldifsnd |
|
| 61 |
|
ineq1 |
|
| 62 |
61
|
neeq1d |
|
| 63 |
|
eqid |
|
| 64 |
63 4 2
|
isufd |
|
| 65 |
64
|
simprbi |
|
| 66 |
65
|
adantr |
|
| 67 |
|
simpr |
|
| 68 |
62 66 67
|
rspcdva |
|
| 69 |
45 60 68
|
syl2anc |
|
| 70 |
|
sseq0 |
|
| 71 |
70
|
expcom |
|
| 72 |
71
|
necon3ad |
|
| 73 |
|
sslin |
|
| 74 |
73
|
con3i |
|
| 75 |
72 74
|
syl6 |
|
| 76 |
44 69 75
|
sylc |
|
| 77 |
40 76
|
sylanbr |
|
| 78 |
77
|
anasss |
|
| 79 |
48
|
idomcringd |
|
| 80 |
79
|
adantr |
|
| 81 |
49
|
adantr |
|
| 82 |
9
|
adantr |
|
| 83 |
82
|
snssd |
|
| 84 |
|
eqid |
|
| 85 |
50 1 84
|
rspcl |
|
| 86 |
81 83 85
|
syl2anc |
|
| 87 |
5
|
ringmgp |
|
| 88 |
49 87
|
syl |
|
| 89 |
8
|
ssrab3 |
|
| 90 |
89
|
a1i |
|
| 91 |
|
eqeq1 |
|
| 92 |
91
|
rexbidv |
|
| 93 |
|
eqcom |
|
| 94 |
93
|
rexbii |
|
| 95 |
92 94
|
bitrdi |
|
| 96 |
|
eqid |
|
| 97 |
1 96
|
ringidcl |
|
| 98 |
49 97
|
syl |
|
| 99 |
|
oveq2 |
|
| 100 |
99
|
eqeq1d |
|
| 101 |
|
wrd0 |
|
| 102 |
101
|
a1i |
|
| 103 |
5 96
|
ringidval |
|
| 104 |
103
|
gsum0 |
|
| 105 |
104
|
a1i |
|
| 106 |
100 102 105
|
rspcedvdw |
|
| 107 |
95 98 106
|
elrabd |
|
| 108 |
107 8
|
eleqtrrdi |
|
| 109 |
6
|
ad2antrr |
|
| 110 |
7
|
ad2antrr |
|
| 111 |
|
eqid |
|
| 112 |
|
simplr |
|
| 113 |
|
simpr |
|
| 114 |
1 2 3 4 5 109 110 8 111 112 113
|
1arithufdlem2 |
|
| 115 |
114
|
anasss |
|
| 116 |
115
|
ralrimivva |
|
| 117 |
5 111
|
mgpplusg |
|
| 118 |
23 103 117
|
issubm |
|
| 119 |
118
|
biimpar |
|
| 120 |
88 90 108 116 119
|
syl13anc |
|
| 121 |
120
|
adantr |
|
| 122 |
|
neq0 |
|
| 123 |
122
|
biimpi |
|
| 124 |
123
|
adantl |
|
| 125 |
6
|
ad4antr |
|
| 126 |
7
|
ad4antr |
|
| 127 |
9
|
ad4antr |
|
| 128 |
10
|
ad4antr |
|
| 129 |
11
|
ad4antr |
|
| 130 |
|
simplr |
|
| 131 |
|
simpr |
|
| 132 |
|
simpllr |
|
| 133 |
132
|
elin1d |
|
| 134 |
131 133
|
eqeltrrd |
|
| 135 |
1 2 3 4 5 125 126 8 127 128 129 111 130 134
|
1arithufdlem3 |
|
| 136 |
49
|
ad2antrr |
|
| 137 |
9
|
ad2antrr |
|
| 138 |
|
simpr |
|
| 139 |
138
|
elin2d |
|
| 140 |
1 111 50
|
elrspsn |
|
| 141 |
140
|
biimpa |
|
| 142 |
136 137 139 141
|
syl21anc |
|
| 143 |
135 142
|
r19.29a |
|
| 144 |
124 143
|
exlimddv |
|
| 145 |
144
|
adantlr |
|
| 146 |
|
simplr |
|
| 147 |
145 146
|
condan |
|
| 148 |
|
eqid |
|
| 149 |
1 80 86 121 5 147 148
|
ssdifidlprm |
|
| 150 |
78 149
|
r19.29a |
|
| 151 |
31 150
|
condan |
|