| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1arithufd.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | 1arithufd.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 3 |  | 1arithufd.u |  |-  U = ( Unit ` R ) | 
						
							| 4 |  | 1arithufd.p |  |-  P = ( RPrime ` R ) | 
						
							| 5 |  | 1arithufd.m |  |-  M = ( mulGrp ` R ) | 
						
							| 6 |  | 1arithufd.r |  |-  ( ph -> R e. UFD ) | 
						
							| 7 |  | 1arithufdlem.2 |  |-  ( ph -> -. R e. DivRing ) | 
						
							| 8 |  | 1arithufdlem.s |  |-  S = { x e. B | E. f e. Word P x = ( M gsum f ) } | 
						
							| 9 |  | 1arithufdlem.3 |  |-  ( ph -> X e. B ) | 
						
							| 10 |  | 1arithufdlem.4 |  |-  ( ph -> -. X e. U ) | 
						
							| 11 |  | 1arithufdlem.5 |  |-  ( ph -> X =/= .0. ) | 
						
							| 12 |  | eqeq1 |  |-  ( x = a -> ( x = ( M gsum f ) <-> a = ( M gsum f ) ) ) | 
						
							| 13 | 12 | rexbidv |  |-  ( x = a -> ( E. f e. Word P x = ( M gsum f ) <-> E. f e. Word P a = ( M gsum f ) ) ) | 
						
							| 14 |  | eqcom |  |-  ( a = ( M gsum f ) <-> ( M gsum f ) = a ) | 
						
							| 15 | 14 | rexbii |  |-  ( E. f e. Word P a = ( M gsum f ) <-> E. f e. Word P ( M gsum f ) = a ) | 
						
							| 16 | 13 15 | bitrdi |  |-  ( x = a -> ( E. f e. Word P x = ( M gsum f ) <-> E. f e. Word P ( M gsum f ) = a ) ) | 
						
							| 17 | 6 | adantr |  |-  ( ( ph /\ a e. P ) -> R e. UFD ) | 
						
							| 18 |  | simpr |  |-  ( ( ph /\ a e. P ) -> a e. P ) | 
						
							| 19 | 1 4 17 18 | rprmcl |  |-  ( ( ph /\ a e. P ) -> a e. B ) | 
						
							| 20 |  | oveq2 |  |-  ( f = <" a "> -> ( M gsum f ) = ( M gsum <" a "> ) ) | 
						
							| 21 | 20 | eqeq1d |  |-  ( f = <" a "> -> ( ( M gsum f ) = a <-> ( M gsum <" a "> ) = a ) ) | 
						
							| 22 | 18 | s1cld |  |-  ( ( ph /\ a e. P ) -> <" a "> e. Word P ) | 
						
							| 23 | 5 1 | mgpbas |  |-  B = ( Base ` M ) | 
						
							| 24 | 23 | gsumws1 |  |-  ( a e. B -> ( M gsum <" a "> ) = a ) | 
						
							| 25 | 19 24 | syl |  |-  ( ( ph /\ a e. P ) -> ( M gsum <" a "> ) = a ) | 
						
							| 26 | 21 22 25 | rspcedvdw |  |-  ( ( ph /\ a e. P ) -> E. f e. Word P ( M gsum f ) = a ) | 
						
							| 27 | 16 19 26 | elrabd |  |-  ( ( ph /\ a e. P ) -> a e. { x e. B | E. f e. Word P x = ( M gsum f ) } ) | 
						
							| 28 | 27 8 | eleqtrrdi |  |-  ( ( ph /\ a e. P ) -> a e. S ) | 
						
							| 29 | 28 | ex |  |-  ( ph -> ( a e. P -> a e. S ) ) | 
						
							| 30 | 29 | ssrdv |  |-  ( ph -> P C_ S ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ph /\ -. X e. S ) -> P C_ S ) | 
						
							| 32 |  | anass |  |-  ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) <-> ( ( ph /\ -. X e. S ) /\ ( i e. ( LIdeal ` R ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) ) ) | 
						
							| 33 |  | ineq2 |  |-  ( p = i -> ( S i^i p ) = ( S i^i i ) ) | 
						
							| 34 | 33 | eqeq1d |  |-  ( p = i -> ( ( S i^i p ) = (/) <-> ( S i^i i ) = (/) ) ) | 
						
							| 35 |  | sseq2 |  |-  ( p = i -> ( ( ( RSpan ` R ) ` { X } ) C_ p <-> ( ( RSpan ` R ) ` { X } ) C_ i ) ) | 
						
							| 36 | 34 35 | anbi12d |  |-  ( p = i -> ( ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) <-> ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) ) | 
						
							| 37 | 36 | elrab |  |-  ( i e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } <-> ( i e. ( LIdeal ` R ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) ) | 
						
							| 38 | 37 | anbi2i |  |-  ( ( ( ph /\ -. X e. S ) /\ i e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } ) <-> ( ( ph /\ -. X e. S ) /\ ( i e. ( LIdeal ` R ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) ) ) | 
						
							| 39 | 32 38 | bitr4i |  |-  ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) <-> ( ( ph /\ -. X e. S ) /\ i e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } ) ) | 
						
							| 40 | 39 | anbi1i |  |-  ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) <-> ( ( ( ph /\ -. X e. S ) /\ i e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } ) /\ i e. ( PrmIdeal ` R ) ) ) | 
						
							| 41 |  | incom |  |-  ( i i^i S ) = ( S i^i i ) | 
						
							| 42 |  | simpllr |  |-  ( ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) | 
						
							| 43 | 42 | simpld |  |-  ( ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> ( S i^i i ) = (/) ) | 
						
							| 44 | 41 43 | eqtrid |  |-  ( ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> ( i i^i S ) = (/) ) | 
						
							| 45 | 6 | ad5antr |  |-  ( ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> R e. UFD ) | 
						
							| 46 |  | simplr |  |-  ( ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> i e. ( PrmIdeal ` R ) ) | 
						
							| 47 | 42 | simprd |  |-  ( ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> ( ( RSpan ` R ) ` { X } ) C_ i ) | 
						
							| 48 | 6 | ufdidom |  |-  ( ph -> R e. IDomn ) | 
						
							| 49 | 48 | idomringd |  |-  ( ph -> R e. Ring ) | 
						
							| 50 |  | eqid |  |-  ( RSpan ` R ) = ( RSpan ` R ) | 
						
							| 51 | 1 50 | rspsnid |  |-  ( ( R e. Ring /\ X e. B ) -> X e. ( ( RSpan ` R ) ` { X } ) ) | 
						
							| 52 | 49 9 51 | syl2anc |  |-  ( ph -> X e. ( ( RSpan ` R ) ` { X } ) ) | 
						
							| 53 | 52 | ad5antr |  |-  ( ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> X e. ( ( RSpan ` R ) ` { X } ) ) | 
						
							| 54 | 47 53 | sseldd |  |-  ( ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> X e. i ) | 
						
							| 55 |  | nelsn |  |-  ( X =/= .0. -> -. X e. { .0. } ) | 
						
							| 56 | 11 55 | syl |  |-  ( ph -> -. X e. { .0. } ) | 
						
							| 57 | 56 | ad5antr |  |-  ( ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> -. X e. { .0. } ) | 
						
							| 58 |  | nelne1 |  |-  ( ( X e. i /\ -. X e. { .0. } ) -> i =/= { .0. } ) | 
						
							| 59 | 54 57 58 | syl2anc |  |-  ( ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> i =/= { .0. } ) | 
						
							| 60 | 46 59 | eldifsnd |  |-  ( ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) | 
						
							| 61 |  | ineq1 |  |-  ( j = i -> ( j i^i P ) = ( i i^i P ) ) | 
						
							| 62 | 61 | neeq1d |  |-  ( j = i -> ( ( j i^i P ) =/= (/) <-> ( i i^i P ) =/= (/) ) ) | 
						
							| 63 |  | eqid |  |-  ( PrmIdeal ` R ) = ( PrmIdeal ` R ) | 
						
							| 64 | 63 4 2 | isufd |  |-  ( R e. UFD <-> ( R e. IDomn /\ A. j e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ( j i^i P ) =/= (/) ) ) | 
						
							| 65 | 64 | simprbi |  |-  ( R e. UFD -> A. j e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ( j i^i P ) =/= (/) ) | 
						
							| 66 | 65 | adantr |  |-  ( ( R e. UFD /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> A. j e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ( j i^i P ) =/= (/) ) | 
						
							| 67 |  | simpr |  |-  ( ( R e. UFD /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) | 
						
							| 68 | 62 66 67 | rspcdva |  |-  ( ( R e. UFD /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> ( i i^i P ) =/= (/) ) | 
						
							| 69 | 45 60 68 | syl2anc |  |-  ( ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> ( i i^i P ) =/= (/) ) | 
						
							| 70 |  | sseq0 |  |-  ( ( ( i i^i P ) C_ ( i i^i S ) /\ ( i i^i S ) = (/) ) -> ( i i^i P ) = (/) ) | 
						
							| 71 | 70 | expcom |  |-  ( ( i i^i S ) = (/) -> ( ( i i^i P ) C_ ( i i^i S ) -> ( i i^i P ) = (/) ) ) | 
						
							| 72 | 71 | necon3ad |  |-  ( ( i i^i S ) = (/) -> ( ( i i^i P ) =/= (/) -> -. ( i i^i P ) C_ ( i i^i S ) ) ) | 
						
							| 73 |  | sslin |  |-  ( P C_ S -> ( i i^i P ) C_ ( i i^i S ) ) | 
						
							| 74 | 73 | con3i |  |-  ( -. ( i i^i P ) C_ ( i i^i S ) -> -. P C_ S ) | 
						
							| 75 | 72 74 | syl6 |  |-  ( ( i i^i S ) = (/) -> ( ( i i^i P ) =/= (/) -> -. P C_ S ) ) | 
						
							| 76 | 44 69 75 | sylc |  |-  ( ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> -. P C_ S ) | 
						
							| 77 | 40 76 | sylanbr |  |-  ( ( ( ( ( ph /\ -. X e. S ) /\ i e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> -. P C_ S ) | 
						
							| 78 | 77 | anasss |  |-  ( ( ( ( ph /\ -. X e. S ) /\ i e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } ) /\ ( i e. ( PrmIdeal ` R ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) ) -> -. P C_ S ) | 
						
							| 79 | 48 | idomcringd |  |-  ( ph -> R e. CRing ) | 
						
							| 80 | 79 | adantr |  |-  ( ( ph /\ -. X e. S ) -> R e. CRing ) | 
						
							| 81 | 49 | adantr |  |-  ( ( ph /\ -. X e. S ) -> R e. Ring ) | 
						
							| 82 | 9 | adantr |  |-  ( ( ph /\ -. X e. S ) -> X e. B ) | 
						
							| 83 | 82 | snssd |  |-  ( ( ph /\ -. X e. S ) -> { X } C_ B ) | 
						
							| 84 |  | eqid |  |-  ( LIdeal ` R ) = ( LIdeal ` R ) | 
						
							| 85 | 50 1 84 | rspcl |  |-  ( ( R e. Ring /\ { X } C_ B ) -> ( ( RSpan ` R ) ` { X } ) e. ( LIdeal ` R ) ) | 
						
							| 86 | 81 83 85 | syl2anc |  |-  ( ( ph /\ -. X e. S ) -> ( ( RSpan ` R ) ` { X } ) e. ( LIdeal ` R ) ) | 
						
							| 87 | 5 | ringmgp |  |-  ( R e. Ring -> M e. Mnd ) | 
						
							| 88 | 49 87 | syl |  |-  ( ph -> M e. Mnd ) | 
						
							| 89 | 8 | ssrab3 |  |-  S C_ B | 
						
							| 90 | 89 | a1i |  |-  ( ph -> S C_ B ) | 
						
							| 91 |  | eqeq1 |  |-  ( x = ( 1r ` R ) -> ( x = ( M gsum f ) <-> ( 1r ` R ) = ( M gsum f ) ) ) | 
						
							| 92 | 91 | rexbidv |  |-  ( x = ( 1r ` R ) -> ( E. f e. Word P x = ( M gsum f ) <-> E. f e. Word P ( 1r ` R ) = ( M gsum f ) ) ) | 
						
							| 93 |  | eqcom |  |-  ( ( 1r ` R ) = ( M gsum f ) <-> ( M gsum f ) = ( 1r ` R ) ) | 
						
							| 94 | 93 | rexbii |  |-  ( E. f e. Word P ( 1r ` R ) = ( M gsum f ) <-> E. f e. Word P ( M gsum f ) = ( 1r ` R ) ) | 
						
							| 95 | 92 94 | bitrdi |  |-  ( x = ( 1r ` R ) -> ( E. f e. Word P x = ( M gsum f ) <-> E. f e. Word P ( M gsum f ) = ( 1r ` R ) ) ) | 
						
							| 96 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 97 | 1 96 | ringidcl |  |-  ( R e. Ring -> ( 1r ` R ) e. B ) | 
						
							| 98 | 49 97 | syl |  |-  ( ph -> ( 1r ` R ) e. B ) | 
						
							| 99 |  | oveq2 |  |-  ( f = (/) -> ( M gsum f ) = ( M gsum (/) ) ) | 
						
							| 100 | 99 | eqeq1d |  |-  ( f = (/) -> ( ( M gsum f ) = ( 1r ` R ) <-> ( M gsum (/) ) = ( 1r ` R ) ) ) | 
						
							| 101 |  | wrd0 |  |-  (/) e. Word P | 
						
							| 102 | 101 | a1i |  |-  ( ph -> (/) e. Word P ) | 
						
							| 103 | 5 96 | ringidval |  |-  ( 1r ` R ) = ( 0g ` M ) | 
						
							| 104 | 103 | gsum0 |  |-  ( M gsum (/) ) = ( 1r ` R ) | 
						
							| 105 | 104 | a1i |  |-  ( ph -> ( M gsum (/) ) = ( 1r ` R ) ) | 
						
							| 106 | 100 102 105 | rspcedvdw |  |-  ( ph -> E. f e. Word P ( M gsum f ) = ( 1r ` R ) ) | 
						
							| 107 | 95 98 106 | elrabd |  |-  ( ph -> ( 1r ` R ) e. { x e. B | E. f e. Word P x = ( M gsum f ) } ) | 
						
							| 108 | 107 8 | eleqtrrdi |  |-  ( ph -> ( 1r ` R ) e. S ) | 
						
							| 109 | 6 | ad2antrr |  |-  ( ( ( ph /\ a e. S ) /\ b e. S ) -> R e. UFD ) | 
						
							| 110 | 7 | ad2antrr |  |-  ( ( ( ph /\ a e. S ) /\ b e. S ) -> -. R e. DivRing ) | 
						
							| 111 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 112 |  | simplr |  |-  ( ( ( ph /\ a e. S ) /\ b e. S ) -> a e. S ) | 
						
							| 113 |  | simpr |  |-  ( ( ( ph /\ a e. S ) /\ b e. S ) -> b e. S ) | 
						
							| 114 | 1 2 3 4 5 109 110 8 111 112 113 | 1arithufdlem2 |  |-  ( ( ( ph /\ a e. S ) /\ b e. S ) -> ( a ( .r ` R ) b ) e. S ) | 
						
							| 115 | 114 | anasss |  |-  ( ( ph /\ ( a e. S /\ b e. S ) ) -> ( a ( .r ` R ) b ) e. S ) | 
						
							| 116 | 115 | ralrimivva |  |-  ( ph -> A. a e. S A. b e. S ( a ( .r ` R ) b ) e. S ) | 
						
							| 117 | 5 111 | mgpplusg |  |-  ( .r ` R ) = ( +g ` M ) | 
						
							| 118 | 23 103 117 | issubm |  |-  ( M e. Mnd -> ( S e. ( SubMnd ` M ) <-> ( S C_ B /\ ( 1r ` R ) e. S /\ A. a e. S A. b e. S ( a ( .r ` R ) b ) e. S ) ) ) | 
						
							| 119 | 118 | biimpar |  |-  ( ( M e. Mnd /\ ( S C_ B /\ ( 1r ` R ) e. S /\ A. a e. S A. b e. S ( a ( .r ` R ) b ) e. S ) ) -> S e. ( SubMnd ` M ) ) | 
						
							| 120 | 88 90 108 116 119 | syl13anc |  |-  ( ph -> S e. ( SubMnd ` M ) ) | 
						
							| 121 | 120 | adantr |  |-  ( ( ph /\ -. X e. S ) -> S e. ( SubMnd ` M ) ) | 
						
							| 122 |  | neq0 |  |-  ( -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) <-> E. u u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) | 
						
							| 123 | 122 | biimpi |  |-  ( -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) -> E. u u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) | 
						
							| 124 | 123 | adantl |  |-  ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) -> E. u u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) | 
						
							| 125 | 6 | ad4antr |  |-  ( ( ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) /\ y e. B ) /\ u = ( y ( .r ` R ) X ) ) -> R e. UFD ) | 
						
							| 126 | 7 | ad4antr |  |-  ( ( ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) /\ y e. B ) /\ u = ( y ( .r ` R ) X ) ) -> -. R e. DivRing ) | 
						
							| 127 | 9 | ad4antr |  |-  ( ( ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) /\ y e. B ) /\ u = ( y ( .r ` R ) X ) ) -> X e. B ) | 
						
							| 128 | 10 | ad4antr |  |-  ( ( ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) /\ y e. B ) /\ u = ( y ( .r ` R ) X ) ) -> -. X e. U ) | 
						
							| 129 | 11 | ad4antr |  |-  ( ( ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) /\ y e. B ) /\ u = ( y ( .r ` R ) X ) ) -> X =/= .0. ) | 
						
							| 130 |  | simplr |  |-  ( ( ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) /\ y e. B ) /\ u = ( y ( .r ` R ) X ) ) -> y e. B ) | 
						
							| 131 |  | simpr |  |-  ( ( ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) /\ y e. B ) /\ u = ( y ( .r ` R ) X ) ) -> u = ( y ( .r ` R ) X ) ) | 
						
							| 132 |  | simpllr |  |-  ( ( ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) /\ y e. B ) /\ u = ( y ( .r ` R ) X ) ) -> u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) | 
						
							| 133 | 132 | elin1d |  |-  ( ( ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) /\ y e. B ) /\ u = ( y ( .r ` R ) X ) ) -> u e. S ) | 
						
							| 134 | 131 133 | eqeltrrd |  |-  ( ( ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) /\ y e. B ) /\ u = ( y ( .r ` R ) X ) ) -> ( y ( .r ` R ) X ) e. S ) | 
						
							| 135 | 1 2 3 4 5 125 126 8 127 128 129 111 130 134 | 1arithufdlem3 |  |-  ( ( ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) /\ y e. B ) /\ u = ( y ( .r ` R ) X ) ) -> X e. S ) | 
						
							| 136 | 49 | ad2antrr |  |-  ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) -> R e. Ring ) | 
						
							| 137 | 9 | ad2antrr |  |-  ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) -> X e. B ) | 
						
							| 138 |  | simpr |  |-  ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) -> u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) | 
						
							| 139 | 138 | elin2d |  |-  ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) -> u e. ( ( RSpan ` R ) ` { X } ) ) | 
						
							| 140 | 1 111 50 | elrspsn |  |-  ( ( R e. Ring /\ X e. B ) -> ( u e. ( ( RSpan ` R ) ` { X } ) <-> E. y e. B u = ( y ( .r ` R ) X ) ) ) | 
						
							| 141 | 140 | biimpa |  |-  ( ( ( R e. Ring /\ X e. B ) /\ u e. ( ( RSpan ` R ) ` { X } ) ) -> E. y e. B u = ( y ( .r ` R ) X ) ) | 
						
							| 142 | 136 137 139 141 | syl21anc |  |-  ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) -> E. y e. B u = ( y ( .r ` R ) X ) ) | 
						
							| 143 | 135 142 | r19.29a |  |-  ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) -> X e. S ) | 
						
							| 144 | 124 143 | exlimddv |  |-  ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) -> X e. S ) | 
						
							| 145 | 144 | adantlr |  |-  ( ( ( ph /\ -. X e. S ) /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) -> X e. S ) | 
						
							| 146 |  | simplr |  |-  ( ( ( ph /\ -. X e. S ) /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) -> -. X e. S ) | 
						
							| 147 | 145 146 | condan |  |-  ( ( ph /\ -. X e. S ) -> ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) | 
						
							| 148 |  | eqid |  |-  { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } = { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } | 
						
							| 149 | 1 80 86 121 5 147 148 | ssdifidlprm |  |-  ( ( ph /\ -. X e. S ) -> E. i e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } ( i e. ( PrmIdeal ` R ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) ) | 
						
							| 150 | 78 149 | r19.29a |  |-  ( ( ph /\ -. X e. S ) -> -. P C_ S ) | 
						
							| 151 | 31 150 | condan |  |-  ( ph -> X e. S ) |