Step |
Hyp |
Ref |
Expression |
1 |
|
1arithufd.b |
|- B = ( Base ` R ) |
2 |
|
1arithufd.0 |
|- .0. = ( 0g ` R ) |
3 |
|
1arithufd.u |
|- U = ( Unit ` R ) |
4 |
|
1arithufd.p |
|- P = ( RPrime ` R ) |
5 |
|
1arithufd.m |
|- M = ( mulGrp ` R ) |
6 |
|
1arithufd.r |
|- ( ph -> R e. UFD ) |
7 |
|
1arithufdlem.2 |
|- ( ph -> -. R e. DivRing ) |
8 |
|
1arithufdlem.s |
|- S = { x e. B | E. f e. Word P x = ( M gsum f ) } |
9 |
|
1arithufdlem.3 |
|- ( ph -> X e. B ) |
10 |
|
1arithufdlem.4 |
|- ( ph -> -. X e. U ) |
11 |
|
1arithufdlem.5 |
|- ( ph -> X =/= .0. ) |
12 |
|
eqeq1 |
|- ( x = a -> ( x = ( M gsum f ) <-> a = ( M gsum f ) ) ) |
13 |
12
|
rexbidv |
|- ( x = a -> ( E. f e. Word P x = ( M gsum f ) <-> E. f e. Word P a = ( M gsum f ) ) ) |
14 |
|
eqcom |
|- ( a = ( M gsum f ) <-> ( M gsum f ) = a ) |
15 |
14
|
rexbii |
|- ( E. f e. Word P a = ( M gsum f ) <-> E. f e. Word P ( M gsum f ) = a ) |
16 |
13 15
|
bitrdi |
|- ( x = a -> ( E. f e. Word P x = ( M gsum f ) <-> E. f e. Word P ( M gsum f ) = a ) ) |
17 |
6
|
adantr |
|- ( ( ph /\ a e. P ) -> R e. UFD ) |
18 |
|
simpr |
|- ( ( ph /\ a e. P ) -> a e. P ) |
19 |
1 4 17 18
|
rprmcl |
|- ( ( ph /\ a e. P ) -> a e. B ) |
20 |
|
oveq2 |
|- ( f = <" a "> -> ( M gsum f ) = ( M gsum <" a "> ) ) |
21 |
20
|
eqeq1d |
|- ( f = <" a "> -> ( ( M gsum f ) = a <-> ( M gsum <" a "> ) = a ) ) |
22 |
18
|
s1cld |
|- ( ( ph /\ a e. P ) -> <" a "> e. Word P ) |
23 |
5 1
|
mgpbas |
|- B = ( Base ` M ) |
24 |
23
|
gsumws1 |
|- ( a e. B -> ( M gsum <" a "> ) = a ) |
25 |
19 24
|
syl |
|- ( ( ph /\ a e. P ) -> ( M gsum <" a "> ) = a ) |
26 |
21 22 25
|
rspcedvdw |
|- ( ( ph /\ a e. P ) -> E. f e. Word P ( M gsum f ) = a ) |
27 |
16 19 26
|
elrabd |
|- ( ( ph /\ a e. P ) -> a e. { x e. B | E. f e. Word P x = ( M gsum f ) } ) |
28 |
27 8
|
eleqtrrdi |
|- ( ( ph /\ a e. P ) -> a e. S ) |
29 |
28
|
ex |
|- ( ph -> ( a e. P -> a e. S ) ) |
30 |
29
|
ssrdv |
|- ( ph -> P C_ S ) |
31 |
30
|
adantr |
|- ( ( ph /\ -. X e. S ) -> P C_ S ) |
32 |
|
anass |
|- ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) <-> ( ( ph /\ -. X e. S ) /\ ( i e. ( LIdeal ` R ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) ) ) |
33 |
|
ineq2 |
|- ( p = i -> ( S i^i p ) = ( S i^i i ) ) |
34 |
33
|
eqeq1d |
|- ( p = i -> ( ( S i^i p ) = (/) <-> ( S i^i i ) = (/) ) ) |
35 |
|
sseq2 |
|- ( p = i -> ( ( ( RSpan ` R ) ` { X } ) C_ p <-> ( ( RSpan ` R ) ` { X } ) C_ i ) ) |
36 |
34 35
|
anbi12d |
|- ( p = i -> ( ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) <-> ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) ) |
37 |
36
|
elrab |
|- ( i e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } <-> ( i e. ( LIdeal ` R ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) ) |
38 |
37
|
anbi2i |
|- ( ( ( ph /\ -. X e. S ) /\ i e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } ) <-> ( ( ph /\ -. X e. S ) /\ ( i e. ( LIdeal ` R ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) ) ) |
39 |
32 38
|
bitr4i |
|- ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) <-> ( ( ph /\ -. X e. S ) /\ i e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } ) ) |
40 |
39
|
anbi1i |
|- ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) <-> ( ( ( ph /\ -. X e. S ) /\ i e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } ) /\ i e. ( PrmIdeal ` R ) ) ) |
41 |
|
incom |
|- ( i i^i S ) = ( S i^i i ) |
42 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) |
43 |
42
|
simpld |
|- ( ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> ( S i^i i ) = (/) ) |
44 |
41 43
|
eqtrid |
|- ( ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> ( i i^i S ) = (/) ) |
45 |
6
|
ad5antr |
|- ( ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> R e. UFD ) |
46 |
|
simplr |
|- ( ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> i e. ( PrmIdeal ` R ) ) |
47 |
42
|
simprd |
|- ( ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> ( ( RSpan ` R ) ` { X } ) C_ i ) |
48 |
6
|
ufdidom |
|- ( ph -> R e. IDomn ) |
49 |
48
|
idomringd |
|- ( ph -> R e. Ring ) |
50 |
|
eqid |
|- ( RSpan ` R ) = ( RSpan ` R ) |
51 |
1 50
|
rspsnid |
|- ( ( R e. Ring /\ X e. B ) -> X e. ( ( RSpan ` R ) ` { X } ) ) |
52 |
49 9 51
|
syl2anc |
|- ( ph -> X e. ( ( RSpan ` R ) ` { X } ) ) |
53 |
52
|
ad5antr |
|- ( ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> X e. ( ( RSpan ` R ) ` { X } ) ) |
54 |
47 53
|
sseldd |
|- ( ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> X e. i ) |
55 |
|
nelsn |
|- ( X =/= .0. -> -. X e. { .0. } ) |
56 |
11 55
|
syl |
|- ( ph -> -. X e. { .0. } ) |
57 |
56
|
ad5antr |
|- ( ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> -. X e. { .0. } ) |
58 |
|
nelne1 |
|- ( ( X e. i /\ -. X e. { .0. } ) -> i =/= { .0. } ) |
59 |
54 57 58
|
syl2anc |
|- ( ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> i =/= { .0. } ) |
60 |
46 59
|
eldifsnd |
|- ( ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) |
61 |
|
ineq1 |
|- ( j = i -> ( j i^i P ) = ( i i^i P ) ) |
62 |
61
|
neeq1d |
|- ( j = i -> ( ( j i^i P ) =/= (/) <-> ( i i^i P ) =/= (/) ) ) |
63 |
|
eqid |
|- ( PrmIdeal ` R ) = ( PrmIdeal ` R ) |
64 |
63 4 2
|
isufd |
|- ( R e. UFD <-> ( R e. IDomn /\ A. j e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ( j i^i P ) =/= (/) ) ) |
65 |
64
|
simprbi |
|- ( R e. UFD -> A. j e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ( j i^i P ) =/= (/) ) |
66 |
65
|
adantr |
|- ( ( R e. UFD /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> A. j e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ( j i^i P ) =/= (/) ) |
67 |
|
simpr |
|- ( ( R e. UFD /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) |
68 |
62 66 67
|
rspcdva |
|- ( ( R e. UFD /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> ( i i^i P ) =/= (/) ) |
69 |
45 60 68
|
syl2anc |
|- ( ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> ( i i^i P ) =/= (/) ) |
70 |
|
sseq0 |
|- ( ( ( i i^i P ) C_ ( i i^i S ) /\ ( i i^i S ) = (/) ) -> ( i i^i P ) = (/) ) |
71 |
70
|
expcom |
|- ( ( i i^i S ) = (/) -> ( ( i i^i P ) C_ ( i i^i S ) -> ( i i^i P ) = (/) ) ) |
72 |
71
|
necon3ad |
|- ( ( i i^i S ) = (/) -> ( ( i i^i P ) =/= (/) -> -. ( i i^i P ) C_ ( i i^i S ) ) ) |
73 |
|
sslin |
|- ( P C_ S -> ( i i^i P ) C_ ( i i^i S ) ) |
74 |
73
|
con3i |
|- ( -. ( i i^i P ) C_ ( i i^i S ) -> -. P C_ S ) |
75 |
72 74
|
syl6 |
|- ( ( i i^i S ) = (/) -> ( ( i i^i P ) =/= (/) -> -. P C_ S ) ) |
76 |
44 69 75
|
sylc |
|- ( ( ( ( ( ( ph /\ -. X e. S ) /\ i e. ( LIdeal ` R ) ) /\ ( ( S i^i i ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ i ) ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> -. P C_ S ) |
77 |
40 76
|
sylanbr |
|- ( ( ( ( ( ph /\ -. X e. S ) /\ i e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } ) /\ i e. ( PrmIdeal ` R ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) -> -. P C_ S ) |
78 |
77
|
anasss |
|- ( ( ( ( ph /\ -. X e. S ) /\ i e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } ) /\ ( i e. ( PrmIdeal ` R ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) ) -> -. P C_ S ) |
79 |
48
|
idomcringd |
|- ( ph -> R e. CRing ) |
80 |
79
|
adantr |
|- ( ( ph /\ -. X e. S ) -> R e. CRing ) |
81 |
49
|
adantr |
|- ( ( ph /\ -. X e. S ) -> R e. Ring ) |
82 |
9
|
adantr |
|- ( ( ph /\ -. X e. S ) -> X e. B ) |
83 |
82
|
snssd |
|- ( ( ph /\ -. X e. S ) -> { X } C_ B ) |
84 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
85 |
50 1 84
|
rspcl |
|- ( ( R e. Ring /\ { X } C_ B ) -> ( ( RSpan ` R ) ` { X } ) e. ( LIdeal ` R ) ) |
86 |
81 83 85
|
syl2anc |
|- ( ( ph /\ -. X e. S ) -> ( ( RSpan ` R ) ` { X } ) e. ( LIdeal ` R ) ) |
87 |
5
|
ringmgp |
|- ( R e. Ring -> M e. Mnd ) |
88 |
49 87
|
syl |
|- ( ph -> M e. Mnd ) |
89 |
8
|
ssrab3 |
|- S C_ B |
90 |
89
|
a1i |
|- ( ph -> S C_ B ) |
91 |
|
eqeq1 |
|- ( x = ( 1r ` R ) -> ( x = ( M gsum f ) <-> ( 1r ` R ) = ( M gsum f ) ) ) |
92 |
91
|
rexbidv |
|- ( x = ( 1r ` R ) -> ( E. f e. Word P x = ( M gsum f ) <-> E. f e. Word P ( 1r ` R ) = ( M gsum f ) ) ) |
93 |
|
eqcom |
|- ( ( 1r ` R ) = ( M gsum f ) <-> ( M gsum f ) = ( 1r ` R ) ) |
94 |
93
|
rexbii |
|- ( E. f e. Word P ( 1r ` R ) = ( M gsum f ) <-> E. f e. Word P ( M gsum f ) = ( 1r ` R ) ) |
95 |
92 94
|
bitrdi |
|- ( x = ( 1r ` R ) -> ( E. f e. Word P x = ( M gsum f ) <-> E. f e. Word P ( M gsum f ) = ( 1r ` R ) ) ) |
96 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
97 |
1 96
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
98 |
49 97
|
syl |
|- ( ph -> ( 1r ` R ) e. B ) |
99 |
|
oveq2 |
|- ( f = (/) -> ( M gsum f ) = ( M gsum (/) ) ) |
100 |
99
|
eqeq1d |
|- ( f = (/) -> ( ( M gsum f ) = ( 1r ` R ) <-> ( M gsum (/) ) = ( 1r ` R ) ) ) |
101 |
|
wrd0 |
|- (/) e. Word P |
102 |
101
|
a1i |
|- ( ph -> (/) e. Word P ) |
103 |
5 96
|
ringidval |
|- ( 1r ` R ) = ( 0g ` M ) |
104 |
103
|
gsum0 |
|- ( M gsum (/) ) = ( 1r ` R ) |
105 |
104
|
a1i |
|- ( ph -> ( M gsum (/) ) = ( 1r ` R ) ) |
106 |
100 102 105
|
rspcedvdw |
|- ( ph -> E. f e. Word P ( M gsum f ) = ( 1r ` R ) ) |
107 |
95 98 106
|
elrabd |
|- ( ph -> ( 1r ` R ) e. { x e. B | E. f e. Word P x = ( M gsum f ) } ) |
108 |
107 8
|
eleqtrrdi |
|- ( ph -> ( 1r ` R ) e. S ) |
109 |
6
|
ad2antrr |
|- ( ( ( ph /\ a e. S ) /\ b e. S ) -> R e. UFD ) |
110 |
7
|
ad2antrr |
|- ( ( ( ph /\ a e. S ) /\ b e. S ) -> -. R e. DivRing ) |
111 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
112 |
|
simplr |
|- ( ( ( ph /\ a e. S ) /\ b e. S ) -> a e. S ) |
113 |
|
simpr |
|- ( ( ( ph /\ a e. S ) /\ b e. S ) -> b e. S ) |
114 |
1 2 3 4 5 109 110 8 111 112 113
|
1arithufdlem2 |
|- ( ( ( ph /\ a e. S ) /\ b e. S ) -> ( a ( .r ` R ) b ) e. S ) |
115 |
114
|
anasss |
|- ( ( ph /\ ( a e. S /\ b e. S ) ) -> ( a ( .r ` R ) b ) e. S ) |
116 |
115
|
ralrimivva |
|- ( ph -> A. a e. S A. b e. S ( a ( .r ` R ) b ) e. S ) |
117 |
5 111
|
mgpplusg |
|- ( .r ` R ) = ( +g ` M ) |
118 |
23 103 117
|
issubm |
|- ( M e. Mnd -> ( S e. ( SubMnd ` M ) <-> ( S C_ B /\ ( 1r ` R ) e. S /\ A. a e. S A. b e. S ( a ( .r ` R ) b ) e. S ) ) ) |
119 |
118
|
biimpar |
|- ( ( M e. Mnd /\ ( S C_ B /\ ( 1r ` R ) e. S /\ A. a e. S A. b e. S ( a ( .r ` R ) b ) e. S ) ) -> S e. ( SubMnd ` M ) ) |
120 |
88 90 108 116 119
|
syl13anc |
|- ( ph -> S e. ( SubMnd ` M ) ) |
121 |
120
|
adantr |
|- ( ( ph /\ -. X e. S ) -> S e. ( SubMnd ` M ) ) |
122 |
|
neq0 |
|- ( -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) <-> E. u u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) |
123 |
122
|
biimpi |
|- ( -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) -> E. u u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) |
124 |
123
|
adantl |
|- ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) -> E. u u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) |
125 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) /\ y e. B ) /\ u = ( y ( .r ` R ) X ) ) -> R e. UFD ) |
126 |
7
|
ad4antr |
|- ( ( ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) /\ y e. B ) /\ u = ( y ( .r ` R ) X ) ) -> -. R e. DivRing ) |
127 |
9
|
ad4antr |
|- ( ( ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) /\ y e. B ) /\ u = ( y ( .r ` R ) X ) ) -> X e. B ) |
128 |
10
|
ad4antr |
|- ( ( ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) /\ y e. B ) /\ u = ( y ( .r ` R ) X ) ) -> -. X e. U ) |
129 |
11
|
ad4antr |
|- ( ( ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) /\ y e. B ) /\ u = ( y ( .r ` R ) X ) ) -> X =/= .0. ) |
130 |
|
simplr |
|- ( ( ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) /\ y e. B ) /\ u = ( y ( .r ` R ) X ) ) -> y e. B ) |
131 |
|
simpr |
|- ( ( ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) /\ y e. B ) /\ u = ( y ( .r ` R ) X ) ) -> u = ( y ( .r ` R ) X ) ) |
132 |
|
simpllr |
|- ( ( ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) /\ y e. B ) /\ u = ( y ( .r ` R ) X ) ) -> u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) |
133 |
132
|
elin1d |
|- ( ( ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) /\ y e. B ) /\ u = ( y ( .r ` R ) X ) ) -> u e. S ) |
134 |
131 133
|
eqeltrrd |
|- ( ( ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) /\ y e. B ) /\ u = ( y ( .r ` R ) X ) ) -> ( y ( .r ` R ) X ) e. S ) |
135 |
1 2 3 4 5 125 126 8 127 128 129 111 130 134
|
1arithufdlem3 |
|- ( ( ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) /\ y e. B ) /\ u = ( y ( .r ` R ) X ) ) -> X e. S ) |
136 |
49
|
ad2antrr |
|- ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) -> R e. Ring ) |
137 |
9
|
ad2antrr |
|- ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) -> X e. B ) |
138 |
|
simpr |
|- ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) -> u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) |
139 |
138
|
elin2d |
|- ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) -> u e. ( ( RSpan ` R ) ` { X } ) ) |
140 |
1 111 50
|
elrspsn |
|- ( ( R e. Ring /\ X e. B ) -> ( u e. ( ( RSpan ` R ) ` { X } ) <-> E. y e. B u = ( y ( .r ` R ) X ) ) ) |
141 |
140
|
biimpa |
|- ( ( ( R e. Ring /\ X e. B ) /\ u e. ( ( RSpan ` R ) ` { X } ) ) -> E. y e. B u = ( y ( .r ` R ) X ) ) |
142 |
136 137 139 141
|
syl21anc |
|- ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) -> E. y e. B u = ( y ( .r ` R ) X ) ) |
143 |
135 142
|
r19.29a |
|- ( ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) /\ u e. ( S i^i ( ( RSpan ` R ) ` { X } ) ) ) -> X e. S ) |
144 |
124 143
|
exlimddv |
|- ( ( ph /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) -> X e. S ) |
145 |
144
|
adantlr |
|- ( ( ( ph /\ -. X e. S ) /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) -> X e. S ) |
146 |
|
simplr |
|- ( ( ( ph /\ -. X e. S ) /\ -. ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) -> -. X e. S ) |
147 |
145 146
|
condan |
|- ( ( ph /\ -. X e. S ) -> ( S i^i ( ( RSpan ` R ) ` { X } ) ) = (/) ) |
148 |
|
eqid |
|- { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } = { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } |
149 |
1 80 86 121 5 147 148
|
ssdifidlprm |
|- ( ( ph /\ -. X e. S ) -> E. i e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } ( i e. ( PrmIdeal ` R ) /\ A. j e. { p e. ( LIdeal ` R ) | ( ( S i^i p ) = (/) /\ ( ( RSpan ` R ) ` { X } ) C_ p ) } -. i C. j ) ) |
150 |
78 149
|
r19.29a |
|- ( ( ph /\ -. X e. S ) -> -. P C_ S ) |
151 |
31 150
|
condan |
|- ( ph -> X e. S ) |