| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1arithufd.b |
|- B = ( Base ` R ) |
| 2 |
|
1arithufd.0 |
|- .0. = ( 0g ` R ) |
| 3 |
|
1arithufd.u |
|- U = ( Unit ` R ) |
| 4 |
|
1arithufd.p |
|- P = ( RPrime ` R ) |
| 5 |
|
1arithufd.m |
|- M = ( mulGrp ` R ) |
| 6 |
|
1arithufd.r |
|- ( ph -> R e. UFD ) |
| 7 |
|
1arithufd.x |
|- ( ph -> X e. B ) |
| 8 |
|
1arithufd.2 |
|- ( ph -> -. X e. U ) |
| 9 |
|
1arithufd.3 |
|- ( ph -> X =/= .0. ) |
| 10 |
|
simpr |
|- ( ( ph /\ R e. DivRing ) -> R e. DivRing ) |
| 11 |
7
|
adantr |
|- ( ( ph /\ R e. DivRing ) -> X e. B ) |
| 12 |
9
|
adantr |
|- ( ( ph /\ R e. DivRing ) -> X =/= .0. ) |
| 13 |
1 3 2
|
drngunit |
|- ( R e. DivRing -> ( X e. U <-> ( X e. B /\ X =/= .0. ) ) ) |
| 14 |
13
|
biimpar |
|- ( ( R e. DivRing /\ ( X e. B /\ X =/= .0. ) ) -> X e. U ) |
| 15 |
10 11 12 14
|
syl12anc |
|- ( ( ph /\ R e. DivRing ) -> X e. U ) |
| 16 |
8
|
adantr |
|- ( ( ph /\ R e. DivRing ) -> -. X e. U ) |
| 17 |
15 16
|
pm2.21dd |
|- ( ( ph /\ R e. DivRing ) -> E. f e. Word P X = ( M gsum f ) ) |
| 18 |
6
|
adantr |
|- ( ( ph /\ -. R e. DivRing ) -> R e. UFD ) |
| 19 |
|
simpr |
|- ( ( ph /\ -. R e. DivRing ) -> -. R e. DivRing ) |
| 20 |
|
eqeq1 |
|- ( y = x -> ( y = ( M gsum f ) <-> x = ( M gsum f ) ) ) |
| 21 |
20
|
rexbidv |
|- ( y = x -> ( E. f e. Word P y = ( M gsum f ) <-> E. f e. Word P x = ( M gsum f ) ) ) |
| 22 |
21
|
cbvrabv |
|- { y e. B | E. f e. Word P y = ( M gsum f ) } = { x e. B | E. f e. Word P x = ( M gsum f ) } |
| 23 |
|
oveq2 |
|- ( f = g -> ( M gsum f ) = ( M gsum g ) ) |
| 24 |
23
|
eqeq2d |
|- ( f = g -> ( x = ( M gsum f ) <-> x = ( M gsum g ) ) ) |
| 25 |
24
|
cbvrexvw |
|- ( E. f e. Word P x = ( M gsum f ) <-> E. g e. Word P x = ( M gsum g ) ) |
| 26 |
22 25
|
rabbieq |
|- { y e. B | E. f e. Word P y = ( M gsum f ) } = { x e. B | E. g e. Word P x = ( M gsum g ) } |
| 27 |
7
|
adantr |
|- ( ( ph /\ -. R e. DivRing ) -> X e. B ) |
| 28 |
8
|
adantr |
|- ( ( ph /\ -. R e. DivRing ) -> -. X e. U ) |
| 29 |
9
|
adantr |
|- ( ( ph /\ -. R e. DivRing ) -> X =/= .0. ) |
| 30 |
1 2 3 4 5 18 19 26 27 28 29
|
1arithufdlem4 |
|- ( ( ph /\ -. R e. DivRing ) -> X e. { y e. B | E. f e. Word P y = ( M gsum f ) } ) |
| 31 |
|
eqeq1 |
|- ( y = X -> ( y = ( M gsum f ) <-> X = ( M gsum f ) ) ) |
| 32 |
31
|
rexbidv |
|- ( y = X -> ( E. f e. Word P y = ( M gsum f ) <-> E. f e. Word P X = ( M gsum f ) ) ) |
| 33 |
32
|
elrab |
|- ( X e. { y e. B | E. f e. Word P y = ( M gsum f ) } <-> ( X e. B /\ E. f e. Word P X = ( M gsum f ) ) ) |
| 34 |
30 33
|
sylib |
|- ( ( ph /\ -. R e. DivRing ) -> ( X e. B /\ E. f e. Word P X = ( M gsum f ) ) ) |
| 35 |
34
|
simprd |
|- ( ( ph /\ -. R e. DivRing ) -> E. f e. Word P X = ( M gsum f ) ) |
| 36 |
17 35
|
pm2.61dan |
|- ( ph -> E. f e. Word P X = ( M gsum f ) ) |