Step |
Hyp |
Ref |
Expression |
1 |
|
1arithufd.b |
|- B = ( Base ` R ) |
2 |
|
1arithufd.0 |
|- .0. = ( 0g ` R ) |
3 |
|
1arithufd.u |
|- U = ( Unit ` R ) |
4 |
|
1arithufd.p |
|- P = ( RPrime ` R ) |
5 |
|
1arithufd.m |
|- M = ( mulGrp ` R ) |
6 |
|
1arithufd.r |
|- ( ph -> R e. UFD ) |
7 |
|
1arithufd.x |
|- ( ph -> X e. B ) |
8 |
|
1arithufd.2 |
|- ( ph -> -. X e. U ) |
9 |
|
1arithufd.3 |
|- ( ph -> X =/= .0. ) |
10 |
|
simpr |
|- ( ( ph /\ R e. DivRing ) -> R e. DivRing ) |
11 |
7
|
adantr |
|- ( ( ph /\ R e. DivRing ) -> X e. B ) |
12 |
9
|
adantr |
|- ( ( ph /\ R e. DivRing ) -> X =/= .0. ) |
13 |
1 3 2
|
drngunit |
|- ( R e. DivRing -> ( X e. U <-> ( X e. B /\ X =/= .0. ) ) ) |
14 |
13
|
biimpar |
|- ( ( R e. DivRing /\ ( X e. B /\ X =/= .0. ) ) -> X e. U ) |
15 |
10 11 12 14
|
syl12anc |
|- ( ( ph /\ R e. DivRing ) -> X e. U ) |
16 |
8
|
adantr |
|- ( ( ph /\ R e. DivRing ) -> -. X e. U ) |
17 |
15 16
|
pm2.21dd |
|- ( ( ph /\ R e. DivRing ) -> E. f e. Word P X = ( M gsum f ) ) |
18 |
6
|
adantr |
|- ( ( ph /\ -. R e. DivRing ) -> R e. UFD ) |
19 |
|
simpr |
|- ( ( ph /\ -. R e. DivRing ) -> -. R e. DivRing ) |
20 |
|
eqeq1 |
|- ( y = x -> ( y = ( M gsum f ) <-> x = ( M gsum f ) ) ) |
21 |
20
|
rexbidv |
|- ( y = x -> ( E. f e. Word P y = ( M gsum f ) <-> E. f e. Word P x = ( M gsum f ) ) ) |
22 |
21
|
cbvrabv |
|- { y e. B | E. f e. Word P y = ( M gsum f ) } = { x e. B | E. f e. Word P x = ( M gsum f ) } |
23 |
|
oveq2 |
|- ( f = g -> ( M gsum f ) = ( M gsum g ) ) |
24 |
23
|
eqeq2d |
|- ( f = g -> ( x = ( M gsum f ) <-> x = ( M gsum g ) ) ) |
25 |
24
|
cbvrexvw |
|- ( E. f e. Word P x = ( M gsum f ) <-> E. g e. Word P x = ( M gsum g ) ) |
26 |
22 25
|
rabbieq |
|- { y e. B | E. f e. Word P y = ( M gsum f ) } = { x e. B | E. g e. Word P x = ( M gsum g ) } |
27 |
7
|
adantr |
|- ( ( ph /\ -. R e. DivRing ) -> X e. B ) |
28 |
8
|
adantr |
|- ( ( ph /\ -. R e. DivRing ) -> -. X e. U ) |
29 |
9
|
adantr |
|- ( ( ph /\ -. R e. DivRing ) -> X =/= .0. ) |
30 |
1 2 3 4 5 18 19 26 27 28 29
|
1arithufdlem4 |
|- ( ( ph /\ -. R e. DivRing ) -> X e. { y e. B | E. f e. Word P y = ( M gsum f ) } ) |
31 |
|
eqeq1 |
|- ( y = X -> ( y = ( M gsum f ) <-> X = ( M gsum f ) ) ) |
32 |
31
|
rexbidv |
|- ( y = X -> ( E. f e. Word P y = ( M gsum f ) <-> E. f e. Word P X = ( M gsum f ) ) ) |
33 |
32
|
elrab |
|- ( X e. { y e. B | E. f e. Word P y = ( M gsum f ) } <-> ( X e. B /\ E. f e. Word P X = ( M gsum f ) ) ) |
34 |
30 33
|
sylib |
|- ( ( ph /\ -. R e. DivRing ) -> ( X e. B /\ E. f e. Word P X = ( M gsum f ) ) ) |
35 |
34
|
simprd |
|- ( ( ph /\ -. R e. DivRing ) -> E. f e. Word P X = ( M gsum f ) ) |
36 |
17 35
|
pm2.61dan |
|- ( ph -> E. f e. Word P X = ( M gsum f ) ) |