| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1arithufd.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | 1arithufd.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 3 |  | 1arithufd.u |  |-  U = ( Unit ` R ) | 
						
							| 4 |  | 1arithufd.p |  |-  P = ( RPrime ` R ) | 
						
							| 5 |  | 1arithufd.m |  |-  M = ( mulGrp ` R ) | 
						
							| 6 |  | 1arithufd.r |  |-  ( ph -> R e. UFD ) | 
						
							| 7 |  | 1arithufd.x |  |-  ( ph -> X e. B ) | 
						
							| 8 |  | 1arithufd.2 |  |-  ( ph -> -. X e. U ) | 
						
							| 9 |  | 1arithufd.3 |  |-  ( ph -> X =/= .0. ) | 
						
							| 10 |  | simpr |  |-  ( ( ph /\ R e. DivRing ) -> R e. DivRing ) | 
						
							| 11 | 7 | adantr |  |-  ( ( ph /\ R e. DivRing ) -> X e. B ) | 
						
							| 12 | 9 | adantr |  |-  ( ( ph /\ R e. DivRing ) -> X =/= .0. ) | 
						
							| 13 | 1 3 2 | drngunit |  |-  ( R e. DivRing -> ( X e. U <-> ( X e. B /\ X =/= .0. ) ) ) | 
						
							| 14 | 13 | biimpar |  |-  ( ( R e. DivRing /\ ( X e. B /\ X =/= .0. ) ) -> X e. U ) | 
						
							| 15 | 10 11 12 14 | syl12anc |  |-  ( ( ph /\ R e. DivRing ) -> X e. U ) | 
						
							| 16 | 8 | adantr |  |-  ( ( ph /\ R e. DivRing ) -> -. X e. U ) | 
						
							| 17 | 15 16 | pm2.21dd |  |-  ( ( ph /\ R e. DivRing ) -> E. f e. Word P X = ( M gsum f ) ) | 
						
							| 18 | 6 | adantr |  |-  ( ( ph /\ -. R e. DivRing ) -> R e. UFD ) | 
						
							| 19 |  | simpr |  |-  ( ( ph /\ -. R e. DivRing ) -> -. R e. DivRing ) | 
						
							| 20 |  | eqeq1 |  |-  ( y = x -> ( y = ( M gsum f ) <-> x = ( M gsum f ) ) ) | 
						
							| 21 | 20 | rexbidv |  |-  ( y = x -> ( E. f e. Word P y = ( M gsum f ) <-> E. f e. Word P x = ( M gsum f ) ) ) | 
						
							| 22 | 21 | cbvrabv |  |-  { y e. B | E. f e. Word P y = ( M gsum f ) } = { x e. B | E. f e. Word P x = ( M gsum f ) } | 
						
							| 23 |  | oveq2 |  |-  ( f = g -> ( M gsum f ) = ( M gsum g ) ) | 
						
							| 24 | 23 | eqeq2d |  |-  ( f = g -> ( x = ( M gsum f ) <-> x = ( M gsum g ) ) ) | 
						
							| 25 | 24 | cbvrexvw |  |-  ( E. f e. Word P x = ( M gsum f ) <-> E. g e. Word P x = ( M gsum g ) ) | 
						
							| 26 | 22 25 | rabbieq |  |-  { y e. B | E. f e. Word P y = ( M gsum f ) } = { x e. B | E. g e. Word P x = ( M gsum g ) } | 
						
							| 27 | 7 | adantr |  |-  ( ( ph /\ -. R e. DivRing ) -> X e. B ) | 
						
							| 28 | 8 | adantr |  |-  ( ( ph /\ -. R e. DivRing ) -> -. X e. U ) | 
						
							| 29 | 9 | adantr |  |-  ( ( ph /\ -. R e. DivRing ) -> X =/= .0. ) | 
						
							| 30 | 1 2 3 4 5 18 19 26 27 28 29 | 1arithufdlem4 |  |-  ( ( ph /\ -. R e. DivRing ) -> X e. { y e. B | E. f e. Word P y = ( M gsum f ) } ) | 
						
							| 31 |  | eqeq1 |  |-  ( y = X -> ( y = ( M gsum f ) <-> X = ( M gsum f ) ) ) | 
						
							| 32 | 31 | rexbidv |  |-  ( y = X -> ( E. f e. Word P y = ( M gsum f ) <-> E. f e. Word P X = ( M gsum f ) ) ) | 
						
							| 33 | 32 | elrab |  |-  ( X e. { y e. B | E. f e. Word P y = ( M gsum f ) } <-> ( X e. B /\ E. f e. Word P X = ( M gsum f ) ) ) | 
						
							| 34 | 30 33 | sylib |  |-  ( ( ph /\ -. R e. DivRing ) -> ( X e. B /\ E. f e. Word P X = ( M gsum f ) ) ) | 
						
							| 35 | 34 | simprd |  |-  ( ( ph /\ -. R e. DivRing ) -> E. f e. Word P X = ( M gsum f ) ) | 
						
							| 36 | 17 35 | pm2.61dan |  |-  ( ph -> E. f e. Word P X = ( M gsum f ) ) |