| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfufd2.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | dfufd2.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 3 |  | dfufd2.u |  |-  U = ( Unit ` R ) | 
						
							| 4 |  | dfufd2.p |  |-  P = ( RPrime ` R ) | 
						
							| 5 |  | dfufd2.m |  |-  M = ( mulGrp ` R ) | 
						
							| 6 |  | dfufd2lem.1 |  |-  ( ph -> R e. IDomn ) | 
						
							| 7 |  | dfufd2lem.2 |  |-  ( ph -> I e. ( PrmIdeal ` R ) ) | 
						
							| 8 |  | dfufd2lem.3 |  |-  ( ph -> F e. Word P ) | 
						
							| 9 |  | dfufd2lem.4 |  |-  ( ph -> ( M gsum F ) e. I ) | 
						
							| 10 |  | dfufd2lem.5 |  |-  ( ph -> ( M gsum F ) =/= .0. ) | 
						
							| 11 |  | simpr |  |-  ( ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) /\ ( F ` i ) e. I ) -> ( F ` i ) e. I ) | 
						
							| 12 |  | eqidd |  |-  ( ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) /\ ( F ` i ) e. I ) -> ( # ` F ) = ( # ` F ) ) | 
						
							| 13 | 8 | ad2antrr |  |-  ( ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) /\ ( F ` i ) e. I ) -> F e. Word P ) | 
						
							| 14 | 12 13 | wrdfd |  |-  ( ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) /\ ( F ` i ) e. I ) -> F : ( 0 ..^ ( # ` F ) ) --> P ) | 
						
							| 15 |  | simplr |  |-  ( ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) /\ ( F ` i ) e. I ) -> i e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 16 | 14 15 | ffvelcdmd |  |-  ( ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) /\ ( F ` i ) e. I ) -> ( F ` i ) e. P ) | 
						
							| 17 |  | inelcm |  |-  ( ( ( F ` i ) e. I /\ ( F ` i ) e. P ) -> ( I i^i P ) =/= (/) ) | 
						
							| 18 | 11 16 17 | syl2anc |  |-  ( ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) /\ ( F ` i ) e. I ) -> ( I i^i P ) =/= (/) ) | 
						
							| 19 |  | id |  |-  ( ph -> ph ) | 
						
							| 20 |  | oveq2 |  |-  ( g = (/) -> ( M gsum g ) = ( M gsum (/) ) ) | 
						
							| 21 | 20 | eleq1d |  |-  ( g = (/) -> ( ( M gsum g ) e. I <-> ( M gsum (/) ) e. I ) ) | 
						
							| 22 | 20 | neeq1d |  |-  ( g = (/) -> ( ( M gsum g ) =/= .0. <-> ( M gsum (/) ) =/= .0. ) ) | 
						
							| 23 | 21 22 | 3anbi23d |  |-  ( g = (/) -> ( ( ph /\ ( M gsum g ) e. I /\ ( M gsum g ) =/= .0. ) <-> ( ph /\ ( M gsum (/) ) e. I /\ ( M gsum (/) ) =/= .0. ) ) ) | 
						
							| 24 |  | fveq2 |  |-  ( g = (/) -> ( # ` g ) = ( # ` (/) ) ) | 
						
							| 25 | 24 | oveq2d |  |-  ( g = (/) -> ( 0 ..^ ( # ` g ) ) = ( 0 ..^ ( # ` (/) ) ) ) | 
						
							| 26 |  | fveq1 |  |-  ( g = (/) -> ( g ` i ) = ( (/) ` i ) ) | 
						
							| 27 | 26 | eleq1d |  |-  ( g = (/) -> ( ( g ` i ) e. I <-> ( (/) ` i ) e. I ) ) | 
						
							| 28 | 25 27 | rexeqbidv |  |-  ( g = (/) -> ( E. i e. ( 0 ..^ ( # ` g ) ) ( g ` i ) e. I <-> E. i e. ( 0 ..^ ( # ` (/) ) ) ( (/) ` i ) e. I ) ) | 
						
							| 29 | 23 28 | imbi12d |  |-  ( g = (/) -> ( ( ( ph /\ ( M gsum g ) e. I /\ ( M gsum g ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` g ) ) ( g ` i ) e. I ) <-> ( ( ph /\ ( M gsum (/) ) e. I /\ ( M gsum (/) ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` (/) ) ) ( (/) ` i ) e. I ) ) ) | 
						
							| 30 |  | oveq2 |  |-  ( g = f -> ( M gsum g ) = ( M gsum f ) ) | 
						
							| 31 | 30 | eleq1d |  |-  ( g = f -> ( ( M gsum g ) e. I <-> ( M gsum f ) e. I ) ) | 
						
							| 32 | 30 | neeq1d |  |-  ( g = f -> ( ( M gsum g ) =/= .0. <-> ( M gsum f ) =/= .0. ) ) | 
						
							| 33 | 31 32 | 3anbi23d |  |-  ( g = f -> ( ( ph /\ ( M gsum g ) e. I /\ ( M gsum g ) =/= .0. ) <-> ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) ) ) | 
						
							| 34 |  | fveq2 |  |-  ( g = f -> ( # ` g ) = ( # ` f ) ) | 
						
							| 35 | 34 | oveq2d |  |-  ( g = f -> ( 0 ..^ ( # ` g ) ) = ( 0 ..^ ( # ` f ) ) ) | 
						
							| 36 |  | fveq1 |  |-  ( g = f -> ( g ` i ) = ( f ` i ) ) | 
						
							| 37 | 36 | eleq1d |  |-  ( g = f -> ( ( g ` i ) e. I <-> ( f ` i ) e. I ) ) | 
						
							| 38 | 35 37 | rexeqbidv |  |-  ( g = f -> ( E. i e. ( 0 ..^ ( # ` g ) ) ( g ` i ) e. I <-> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) | 
						
							| 39 | 33 38 | imbi12d |  |-  ( g = f -> ( ( ( ph /\ ( M gsum g ) e. I /\ ( M gsum g ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` g ) ) ( g ` i ) e. I ) <-> ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) ) | 
						
							| 40 |  | oveq2 |  |-  ( g = ( f ++ <" p "> ) -> ( M gsum g ) = ( M gsum ( f ++ <" p "> ) ) ) | 
						
							| 41 | 40 | eleq1d |  |-  ( g = ( f ++ <" p "> ) -> ( ( M gsum g ) e. I <-> ( M gsum ( f ++ <" p "> ) ) e. I ) ) | 
						
							| 42 | 40 | neeq1d |  |-  ( g = ( f ++ <" p "> ) -> ( ( M gsum g ) =/= .0. <-> ( M gsum ( f ++ <" p "> ) ) =/= .0. ) ) | 
						
							| 43 | 41 42 | 3anbi23d |  |-  ( g = ( f ++ <" p "> ) -> ( ( ph /\ ( M gsum g ) e. I /\ ( M gsum g ) =/= .0. ) <-> ( ph /\ ( M gsum ( f ++ <" p "> ) ) e. I /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) ) ) | 
						
							| 44 |  | fveq2 |  |-  ( g = ( f ++ <" p "> ) -> ( # ` g ) = ( # ` ( f ++ <" p "> ) ) ) | 
						
							| 45 | 44 | oveq2d |  |-  ( g = ( f ++ <" p "> ) -> ( 0 ..^ ( # ` g ) ) = ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ) | 
						
							| 46 |  | fveq1 |  |-  ( g = ( f ++ <" p "> ) -> ( g ` i ) = ( ( f ++ <" p "> ) ` i ) ) | 
						
							| 47 | 46 | eleq1d |  |-  ( g = ( f ++ <" p "> ) -> ( ( g ` i ) e. I <-> ( ( f ++ <" p "> ) ` i ) e. I ) ) | 
						
							| 48 | 45 47 | rexeqbidv |  |-  ( g = ( f ++ <" p "> ) -> ( E. i e. ( 0 ..^ ( # ` g ) ) ( g ` i ) e. I <-> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) ) | 
						
							| 49 | 43 48 | imbi12d |  |-  ( g = ( f ++ <" p "> ) -> ( ( ( ph /\ ( M gsum g ) e. I /\ ( M gsum g ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` g ) ) ( g ` i ) e. I ) <-> ( ( ph /\ ( M gsum ( f ++ <" p "> ) ) e. I /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) ) ) | 
						
							| 50 |  | oveq2 |  |-  ( g = F -> ( M gsum g ) = ( M gsum F ) ) | 
						
							| 51 | 50 | eleq1d |  |-  ( g = F -> ( ( M gsum g ) e. I <-> ( M gsum F ) e. I ) ) | 
						
							| 52 | 50 | neeq1d |  |-  ( g = F -> ( ( M gsum g ) =/= .0. <-> ( M gsum F ) =/= .0. ) ) | 
						
							| 53 | 51 52 | 3anbi23d |  |-  ( g = F -> ( ( ph /\ ( M gsum g ) e. I /\ ( M gsum g ) =/= .0. ) <-> ( ph /\ ( M gsum F ) e. I /\ ( M gsum F ) =/= .0. ) ) ) | 
						
							| 54 |  | fveq2 |  |-  ( g = F -> ( # ` g ) = ( # ` F ) ) | 
						
							| 55 | 54 | oveq2d |  |-  ( g = F -> ( 0 ..^ ( # ` g ) ) = ( 0 ..^ ( # ` F ) ) ) | 
						
							| 56 |  | fveq1 |  |-  ( g = F -> ( g ` i ) = ( F ` i ) ) | 
						
							| 57 | 56 | eleq1d |  |-  ( g = F -> ( ( g ` i ) e. I <-> ( F ` i ) e. I ) ) | 
						
							| 58 | 55 57 | rexeqbidv |  |-  ( g = F -> ( E. i e. ( 0 ..^ ( # ` g ) ) ( g ` i ) e. I <-> E. i e. ( 0 ..^ ( # ` F ) ) ( F ` i ) e. I ) ) | 
						
							| 59 | 53 58 | imbi12d |  |-  ( g = F -> ( ( ( ph /\ ( M gsum g ) e. I /\ ( M gsum g ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` g ) ) ( g ` i ) e. I ) <-> ( ( ph /\ ( M gsum F ) e. I /\ ( M gsum F ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` F ) ) ( F ` i ) e. I ) ) ) | 
						
							| 60 | 6 | idomringd |  |-  ( ph -> R e. Ring ) | 
						
							| 61 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 62 | 3 61 | 1unit |  |-  ( R e. Ring -> ( 1r ` R ) e. U ) | 
						
							| 63 | 60 62 | syl |  |-  ( ph -> ( 1r ` R ) e. U ) | 
						
							| 64 | 63 | ad2antrr |  |-  ( ( ( ph /\ ( M gsum (/) ) e. I ) /\ ( M gsum (/) ) =/= .0. ) -> ( 1r ` R ) e. U ) | 
						
							| 65 | 5 61 | ringidval |  |-  ( 1r ` R ) = ( 0g ` M ) | 
						
							| 66 | 65 | gsum0 |  |-  ( M gsum (/) ) = ( 1r ` R ) | 
						
							| 67 |  | simplr |  |-  ( ( ( ph /\ ( M gsum (/) ) e. I ) /\ ( M gsum (/) ) =/= .0. ) -> ( M gsum (/) ) e. I ) | 
						
							| 68 | 66 67 | eqeltrrid |  |-  ( ( ( ph /\ ( M gsum (/) ) e. I ) /\ ( M gsum (/) ) =/= .0. ) -> ( 1r ` R ) e. I ) | 
						
							| 69 | 60 | ad2antrr |  |-  ( ( ( ph /\ ( M gsum (/) ) e. I ) /\ ( M gsum (/) ) =/= .0. ) -> R e. Ring ) | 
						
							| 70 | 7 | ad2antrr |  |-  ( ( ( ph /\ ( M gsum (/) ) e. I ) /\ ( M gsum (/) ) =/= .0. ) -> I e. ( PrmIdeal ` R ) ) | 
						
							| 71 |  | prmidlidl |  |-  ( ( R e. Ring /\ I e. ( PrmIdeal ` R ) ) -> I e. ( LIdeal ` R ) ) | 
						
							| 72 | 69 70 71 | syl2anc |  |-  ( ( ( ph /\ ( M gsum (/) ) e. I ) /\ ( M gsum (/) ) =/= .0. ) -> I e. ( LIdeal ` R ) ) | 
						
							| 73 | 1 3 64 68 69 72 | lidlunitel |  |-  ( ( ( ph /\ ( M gsum (/) ) e. I ) /\ ( M gsum (/) ) =/= .0. ) -> I = B ) | 
						
							| 74 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 75 | 1 74 | prmidlnr |  |-  ( ( R e. Ring /\ I e. ( PrmIdeal ` R ) ) -> I =/= B ) | 
						
							| 76 | 69 70 75 | syl2anc |  |-  ( ( ( ph /\ ( M gsum (/) ) e. I ) /\ ( M gsum (/) ) =/= .0. ) -> I =/= B ) | 
						
							| 77 | 73 76 | pm2.21ddne |  |-  ( ( ( ph /\ ( M gsum (/) ) e. I ) /\ ( M gsum (/) ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` (/) ) ) ( (/) ` i ) e. I ) | 
						
							| 78 | 77 | 3impa |  |-  ( ( ph /\ ( M gsum (/) ) e. I /\ ( M gsum (/) ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` (/) ) ) ( (/) ` i ) e. I ) | 
						
							| 79 |  | simpllr |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ph ) | 
						
							| 80 |  | simp-4r |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( M gsum f ) e. I ) | 
						
							| 81 | 6 | idomdomd |  |-  ( ph -> R e. Domn ) | 
						
							| 82 | 81 | ad3antlr |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> R e. Domn ) | 
						
							| 83 | 6 | adantr |  |-  ( ( ph /\ p e. P ) -> R e. IDomn ) | 
						
							| 84 |  | simpr |  |-  ( ( ph /\ p e. P ) -> p e. P ) | 
						
							| 85 | 1 4 83 84 | rprmcl |  |-  ( ( ph /\ p e. P ) -> p e. B ) | 
						
							| 86 | 4 2 83 84 | rprmnz |  |-  ( ( ph /\ p e. P ) -> p =/= .0. ) | 
						
							| 87 | 85 86 | eldifsnd |  |-  ( ( ph /\ p e. P ) -> p e. ( B \ { .0. } ) ) | 
						
							| 88 | 87 | ex |  |-  ( ph -> ( p e. P -> p e. ( B \ { .0. } ) ) ) | 
						
							| 89 | 88 | ssrdv |  |-  ( ph -> P C_ ( B \ { .0. } ) ) | 
						
							| 90 |  | sswrd |  |-  ( P C_ ( B \ { .0. } ) -> Word P C_ Word ( B \ { .0. } ) ) | 
						
							| 91 | 89 90 | syl |  |-  ( ph -> Word P C_ Word ( B \ { .0. } ) ) | 
						
							| 92 | 91 | ad3antlr |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> Word P C_ Word ( B \ { .0. } ) ) | 
						
							| 93 |  | simpll |  |-  ( ( ( f e. Word P /\ p e. P ) /\ ph ) -> f e. Word P ) | 
						
							| 94 | 93 | ad5ant13 |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> f e. Word P ) | 
						
							| 95 | 92 94 | sseldd |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> f e. Word ( B \ { .0. } ) ) | 
						
							| 96 | 1 5 2 82 95 | domnprodn0 |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( M gsum f ) =/= .0. ) | 
						
							| 97 | 79 80 96 | 3jca |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) ) | 
						
							| 98 |  | lencl |  |-  ( f e. Word P -> ( # ` f ) e. NN0 ) | 
						
							| 99 |  | fzossfzop1 |  |-  ( ( # ` f ) e. NN0 -> ( 0 ..^ ( # ` f ) ) C_ ( 0 ..^ ( ( # ` f ) + 1 ) ) ) | 
						
							| 100 | 94 98 99 | 3syl |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( 0 ..^ ( # ` f ) ) C_ ( 0 ..^ ( ( # ` f ) + 1 ) ) ) | 
						
							| 101 |  | ccatws1len |  |-  ( f e. Word P -> ( # ` ( f ++ <" p "> ) ) = ( ( # ` f ) + 1 ) ) | 
						
							| 102 | 94 101 | syl |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( # ` ( f ++ <" p "> ) ) = ( ( # ` f ) + 1 ) ) | 
						
							| 103 | 102 | oveq2d |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) = ( 0 ..^ ( ( # ` f ) + 1 ) ) ) | 
						
							| 104 | 100 103 | sseqtrrd |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( 0 ..^ ( # ` f ) ) C_ ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ) | 
						
							| 105 | 94 | ad2antrr |  |-  ( ( ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) /\ i e. ( 0 ..^ ( # ` f ) ) ) /\ ( f ` i ) e. I ) -> f e. Word P ) | 
						
							| 106 |  | simplr |  |-  ( ( ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) /\ i e. ( 0 ..^ ( # ` f ) ) ) /\ ( f ` i ) e. I ) -> i e. ( 0 ..^ ( # ` f ) ) ) | 
						
							| 107 |  | ccats1val1 |  |-  ( ( f e. Word P /\ i e. ( 0 ..^ ( # ` f ) ) ) -> ( ( f ++ <" p "> ) ` i ) = ( f ` i ) ) | 
						
							| 108 | 105 106 107 | syl2anc |  |-  ( ( ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) /\ i e. ( 0 ..^ ( # ` f ) ) ) /\ ( f ` i ) e. I ) -> ( ( f ++ <" p "> ) ` i ) = ( f ` i ) ) | 
						
							| 109 |  | simpr |  |-  ( ( ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) /\ i e. ( 0 ..^ ( # ` f ) ) ) /\ ( f ` i ) e. I ) -> ( f ` i ) e. I ) | 
						
							| 110 | 108 109 | eqeltrd |  |-  ( ( ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) /\ i e. ( 0 ..^ ( # ` f ) ) ) /\ ( f ` i ) e. I ) -> ( ( f ++ <" p "> ) ` i ) e. I ) | 
						
							| 111 | 110 | ex |  |-  ( ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) /\ i e. ( 0 ..^ ( # ` f ) ) ) -> ( ( f ` i ) e. I -> ( ( f ++ <" p "> ) ` i ) e. I ) ) | 
						
							| 112 | 111 | reximdva |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I -> E. i e. ( 0 ..^ ( # ` f ) ) ( ( f ++ <" p "> ) ` i ) e. I ) ) | 
						
							| 113 |  | ssrexv |  |-  ( ( 0 ..^ ( # ` f ) ) C_ ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) -> ( E. i e. ( 0 ..^ ( # ` f ) ) ( ( f ++ <" p "> ) ` i ) e. I -> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) ) | 
						
							| 114 | 104 112 113 | sylsyld |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I -> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) ) | 
						
							| 115 | 97 114 | embantd |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) -> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) ) | 
						
							| 116 | 115 | imp |  |-  ( ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) -> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) | 
						
							| 117 | 116 | an62ds |  |-  ( ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) /\ ( M gsum f ) e. I ) -> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) | 
						
							| 118 |  | fveq2 |  |-  ( i = ( # ` f ) -> ( ( f ++ <" p "> ) ` i ) = ( ( f ++ <" p "> ) ` ( # ` f ) ) ) | 
						
							| 119 | 118 | eleq1d |  |-  ( i = ( # ` f ) -> ( ( ( f ++ <" p "> ) ` i ) e. I <-> ( ( f ++ <" p "> ) ` ( # ` f ) ) e. I ) ) | 
						
							| 120 | 98 | ad5antr |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ p e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( # ` f ) e. NN0 ) | 
						
							| 121 |  | fzonn0p1 |  |-  ( ( # ` f ) e. NN0 -> ( # ` f ) e. ( 0 ..^ ( ( # ` f ) + 1 ) ) ) | 
						
							| 122 | 120 121 | syl |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ p e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( # ` f ) e. ( 0 ..^ ( ( # ` f ) + 1 ) ) ) | 
						
							| 123 | 101 | ad5antr |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ p e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( # ` ( f ++ <" p "> ) ) = ( ( # ` f ) + 1 ) ) | 
						
							| 124 | 123 | oveq2d |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ p e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) = ( 0 ..^ ( ( # ` f ) + 1 ) ) ) | 
						
							| 125 | 122 124 | eleqtrrd |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ p e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( # ` f ) e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ) | 
						
							| 126 |  | ccatws1ls |  |-  ( ( f e. Word P /\ p e. P ) -> ( ( f ++ <" p "> ) ` ( # ` f ) ) = p ) | 
						
							| 127 | 126 | ad4antr |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ p e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( ( f ++ <" p "> ) ` ( # ` f ) ) = p ) | 
						
							| 128 |  | simp-4r |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ p e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> p e. I ) | 
						
							| 129 | 127 128 | eqeltrd |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ p e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( ( f ++ <" p "> ) ` ( # ` f ) ) e. I ) | 
						
							| 130 | 119 125 129 | rspcedvdw |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ p e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) | 
						
							| 131 | 130 | adantr |  |-  ( ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ p e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) -> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) | 
						
							| 132 | 131 | an62ds |  |-  ( ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) /\ p e. I ) -> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) | 
						
							| 133 | 6 | idomcringd |  |-  ( ph -> R e. CRing ) | 
						
							| 134 | 133 | ad3antlr |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> R e. CRing ) | 
						
							| 135 | 7 | ad3antlr |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> I e. ( PrmIdeal ` R ) ) | 
						
							| 136 | 5 1 | mgpbas |  |-  B = ( Base ` M ) | 
						
							| 137 | 5 | crngmgp |  |-  ( R e. CRing -> M e. CMnd ) | 
						
							| 138 | 133 137 | syl |  |-  ( ph -> M e. CMnd ) | 
						
							| 139 | 138 | adantl |  |-  ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) -> M e. CMnd ) | 
						
							| 140 |  | ovexd |  |-  ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) -> ( 0 ..^ ( # ` f ) ) e. _V ) | 
						
							| 141 |  | eqidd |  |-  ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) -> ( # ` f ) = ( # ` f ) ) | 
						
							| 142 |  | simplll |  |-  ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) -> f e. Word P ) | 
						
							| 143 | 141 142 | wrdfd |  |-  ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) -> f : ( 0 ..^ ( # ` f ) ) --> P ) | 
						
							| 144 | 85 | ex |  |-  ( ph -> ( p e. P -> p e. B ) ) | 
						
							| 145 | 144 | ssrdv |  |-  ( ph -> P C_ B ) | 
						
							| 146 | 145 | adantl |  |-  ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) -> P C_ B ) | 
						
							| 147 | 143 146 | fssd |  |-  ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) -> f : ( 0 ..^ ( # ` f ) ) --> B ) | 
						
							| 148 |  | fvexd |  |-  ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) -> ( 1r ` R ) e. _V ) | 
						
							| 149 | 148 142 | wrdfsupp |  |-  ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) -> f finSupp ( 1r ` R ) ) | 
						
							| 150 | 136 65 139 140 147 149 | gsumcl |  |-  ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) -> ( M gsum f ) e. B ) | 
						
							| 151 | 150 | ad2antrr |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( M gsum f ) e. B ) | 
						
							| 152 | 145 | adantl |  |-  ( ( ( f e. Word P /\ p e. P ) /\ ph ) -> P C_ B ) | 
						
							| 153 |  | simplr |  |-  ( ( ( f e. Word P /\ p e. P ) /\ ph ) -> p e. P ) | 
						
							| 154 | 152 153 | sseldd |  |-  ( ( ( f e. Word P /\ p e. P ) /\ ph ) -> p e. B ) | 
						
							| 155 | 154 | ad5ant13 |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> p e. B ) | 
						
							| 156 | 138 | cmnmndd |  |-  ( ph -> M e. Mnd ) | 
						
							| 157 | 156 | adantl |  |-  ( ( ( f e. Word P /\ p e. P ) /\ ph ) -> M e. Mnd ) | 
						
							| 158 |  | sswrd |  |-  ( P C_ B -> Word P C_ Word B ) | 
						
							| 159 | 145 158 | syl |  |-  ( ph -> Word P C_ Word B ) | 
						
							| 160 | 159 | adantl |  |-  ( ( ( f e. Word P /\ p e. P ) /\ ph ) -> Word P C_ Word B ) | 
						
							| 161 | 160 93 | sseldd |  |-  ( ( ( f e. Word P /\ p e. P ) /\ ph ) -> f e. Word B ) | 
						
							| 162 | 5 74 | mgpplusg |  |-  ( .r ` R ) = ( +g ` M ) | 
						
							| 163 | 136 162 | gsumccatsn |  |-  ( ( M e. Mnd /\ f e. Word B /\ p e. B ) -> ( M gsum ( f ++ <" p "> ) ) = ( ( M gsum f ) ( .r ` R ) p ) ) | 
						
							| 164 | 157 161 154 163 | syl3anc |  |-  ( ( ( f e. Word P /\ p e. P ) /\ ph ) -> ( M gsum ( f ++ <" p "> ) ) = ( ( M gsum f ) ( .r ` R ) p ) ) | 
						
							| 165 | 164 | ad5ant13 |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( M gsum ( f ++ <" p "> ) ) = ( ( M gsum f ) ( .r ` R ) p ) ) | 
						
							| 166 |  | simplr |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( M gsum ( f ++ <" p "> ) ) e. I ) | 
						
							| 167 | 165 166 | eqeltrrd |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( ( M gsum f ) ( .r ` R ) p ) e. I ) | 
						
							| 168 | 1 74 | prmidlc |  |-  ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ ( ( M gsum f ) e. B /\ p e. B /\ ( ( M gsum f ) ( .r ` R ) p ) e. I ) ) -> ( ( M gsum f ) e. I \/ p e. I ) ) | 
						
							| 169 | 134 135 151 155 167 168 | syl23anc |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( ( M gsum f ) e. I \/ p e. I ) ) | 
						
							| 170 | 117 132 169 | mpjaodan |  |-  ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) | 
						
							| 171 | 170 | exp41 |  |-  ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) -> ( ph -> ( ( M gsum ( f ++ <" p "> ) ) e. I -> ( ( M gsum ( f ++ <" p "> ) ) =/= .0. -> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) ) ) ) | 
						
							| 172 | 171 | 3impd |  |-  ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) -> ( ( ph /\ ( M gsum ( f ++ <" p "> ) ) e. I /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) ) | 
						
							| 173 | 172 | ex |  |-  ( ( f e. Word P /\ p e. P ) -> ( ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) -> ( ( ph /\ ( M gsum ( f ++ <" p "> ) ) e. I /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) ) ) | 
						
							| 174 | 29 39 49 59 78 173 | wrdind |  |-  ( F e. Word P -> ( ( ph /\ ( M gsum F ) e. I /\ ( M gsum F ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` F ) ) ( F ` i ) e. I ) ) | 
						
							| 175 | 174 | imp |  |-  ( ( F e. Word P /\ ( ph /\ ( M gsum F ) e. I /\ ( M gsum F ) =/= .0. ) ) -> E. i e. ( 0 ..^ ( # ` F ) ) ( F ` i ) e. I ) | 
						
							| 176 | 8 19 9 10 175 | syl13anc |  |-  ( ph -> E. i e. ( 0 ..^ ( # ` F ) ) ( F ` i ) e. I ) | 
						
							| 177 | 18 176 | r19.29a |  |-  ( ph -> ( I i^i P ) =/= (/) ) |