| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfufd2.b |
|- B = ( Base ` R ) |
| 2 |
|
dfufd2.0 |
|- .0. = ( 0g ` R ) |
| 3 |
|
dfufd2.u |
|- U = ( Unit ` R ) |
| 4 |
|
dfufd2.p |
|- P = ( RPrime ` R ) |
| 5 |
|
dfufd2.m |
|- M = ( mulGrp ` R ) |
| 6 |
|
dfufd2lem.1 |
|- ( ph -> R e. IDomn ) |
| 7 |
|
dfufd2lem.2 |
|- ( ph -> I e. ( PrmIdeal ` R ) ) |
| 8 |
|
dfufd2lem.3 |
|- ( ph -> F e. Word P ) |
| 9 |
|
dfufd2lem.4 |
|- ( ph -> ( M gsum F ) e. I ) |
| 10 |
|
dfufd2lem.5 |
|- ( ph -> ( M gsum F ) =/= .0. ) |
| 11 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) /\ ( F ` i ) e. I ) -> ( F ` i ) e. I ) |
| 12 |
|
eqidd |
|- ( ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) /\ ( F ` i ) e. I ) -> ( # ` F ) = ( # ` F ) ) |
| 13 |
8
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) /\ ( F ` i ) e. I ) -> F e. Word P ) |
| 14 |
12 13
|
wrdfd |
|- ( ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) /\ ( F ` i ) e. I ) -> F : ( 0 ..^ ( # ` F ) ) --> P ) |
| 15 |
|
simplr |
|- ( ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) /\ ( F ` i ) e. I ) -> i e. ( 0 ..^ ( # ` F ) ) ) |
| 16 |
14 15
|
ffvelcdmd |
|- ( ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) /\ ( F ` i ) e. I ) -> ( F ` i ) e. P ) |
| 17 |
|
inelcm |
|- ( ( ( F ` i ) e. I /\ ( F ` i ) e. P ) -> ( I i^i P ) =/= (/) ) |
| 18 |
11 16 17
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ ( # ` F ) ) ) /\ ( F ` i ) e. I ) -> ( I i^i P ) =/= (/) ) |
| 19 |
|
id |
|- ( ph -> ph ) |
| 20 |
|
oveq2 |
|- ( g = (/) -> ( M gsum g ) = ( M gsum (/) ) ) |
| 21 |
20
|
eleq1d |
|- ( g = (/) -> ( ( M gsum g ) e. I <-> ( M gsum (/) ) e. I ) ) |
| 22 |
20
|
neeq1d |
|- ( g = (/) -> ( ( M gsum g ) =/= .0. <-> ( M gsum (/) ) =/= .0. ) ) |
| 23 |
21 22
|
3anbi23d |
|- ( g = (/) -> ( ( ph /\ ( M gsum g ) e. I /\ ( M gsum g ) =/= .0. ) <-> ( ph /\ ( M gsum (/) ) e. I /\ ( M gsum (/) ) =/= .0. ) ) ) |
| 24 |
|
fveq2 |
|- ( g = (/) -> ( # ` g ) = ( # ` (/) ) ) |
| 25 |
24
|
oveq2d |
|- ( g = (/) -> ( 0 ..^ ( # ` g ) ) = ( 0 ..^ ( # ` (/) ) ) ) |
| 26 |
|
fveq1 |
|- ( g = (/) -> ( g ` i ) = ( (/) ` i ) ) |
| 27 |
26
|
eleq1d |
|- ( g = (/) -> ( ( g ` i ) e. I <-> ( (/) ` i ) e. I ) ) |
| 28 |
25 27
|
rexeqbidv |
|- ( g = (/) -> ( E. i e. ( 0 ..^ ( # ` g ) ) ( g ` i ) e. I <-> E. i e. ( 0 ..^ ( # ` (/) ) ) ( (/) ` i ) e. I ) ) |
| 29 |
23 28
|
imbi12d |
|- ( g = (/) -> ( ( ( ph /\ ( M gsum g ) e. I /\ ( M gsum g ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` g ) ) ( g ` i ) e. I ) <-> ( ( ph /\ ( M gsum (/) ) e. I /\ ( M gsum (/) ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` (/) ) ) ( (/) ` i ) e. I ) ) ) |
| 30 |
|
oveq2 |
|- ( g = f -> ( M gsum g ) = ( M gsum f ) ) |
| 31 |
30
|
eleq1d |
|- ( g = f -> ( ( M gsum g ) e. I <-> ( M gsum f ) e. I ) ) |
| 32 |
30
|
neeq1d |
|- ( g = f -> ( ( M gsum g ) =/= .0. <-> ( M gsum f ) =/= .0. ) ) |
| 33 |
31 32
|
3anbi23d |
|- ( g = f -> ( ( ph /\ ( M gsum g ) e. I /\ ( M gsum g ) =/= .0. ) <-> ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) ) ) |
| 34 |
|
fveq2 |
|- ( g = f -> ( # ` g ) = ( # ` f ) ) |
| 35 |
34
|
oveq2d |
|- ( g = f -> ( 0 ..^ ( # ` g ) ) = ( 0 ..^ ( # ` f ) ) ) |
| 36 |
|
fveq1 |
|- ( g = f -> ( g ` i ) = ( f ` i ) ) |
| 37 |
36
|
eleq1d |
|- ( g = f -> ( ( g ` i ) e. I <-> ( f ` i ) e. I ) ) |
| 38 |
35 37
|
rexeqbidv |
|- ( g = f -> ( E. i e. ( 0 ..^ ( # ` g ) ) ( g ` i ) e. I <-> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) |
| 39 |
33 38
|
imbi12d |
|- ( g = f -> ( ( ( ph /\ ( M gsum g ) e. I /\ ( M gsum g ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` g ) ) ( g ` i ) e. I ) <-> ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) ) |
| 40 |
|
oveq2 |
|- ( g = ( f ++ <" p "> ) -> ( M gsum g ) = ( M gsum ( f ++ <" p "> ) ) ) |
| 41 |
40
|
eleq1d |
|- ( g = ( f ++ <" p "> ) -> ( ( M gsum g ) e. I <-> ( M gsum ( f ++ <" p "> ) ) e. I ) ) |
| 42 |
40
|
neeq1d |
|- ( g = ( f ++ <" p "> ) -> ( ( M gsum g ) =/= .0. <-> ( M gsum ( f ++ <" p "> ) ) =/= .0. ) ) |
| 43 |
41 42
|
3anbi23d |
|- ( g = ( f ++ <" p "> ) -> ( ( ph /\ ( M gsum g ) e. I /\ ( M gsum g ) =/= .0. ) <-> ( ph /\ ( M gsum ( f ++ <" p "> ) ) e. I /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) ) ) |
| 44 |
|
fveq2 |
|- ( g = ( f ++ <" p "> ) -> ( # ` g ) = ( # ` ( f ++ <" p "> ) ) ) |
| 45 |
44
|
oveq2d |
|- ( g = ( f ++ <" p "> ) -> ( 0 ..^ ( # ` g ) ) = ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ) |
| 46 |
|
fveq1 |
|- ( g = ( f ++ <" p "> ) -> ( g ` i ) = ( ( f ++ <" p "> ) ` i ) ) |
| 47 |
46
|
eleq1d |
|- ( g = ( f ++ <" p "> ) -> ( ( g ` i ) e. I <-> ( ( f ++ <" p "> ) ` i ) e. I ) ) |
| 48 |
45 47
|
rexeqbidv |
|- ( g = ( f ++ <" p "> ) -> ( E. i e. ( 0 ..^ ( # ` g ) ) ( g ` i ) e. I <-> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) ) |
| 49 |
43 48
|
imbi12d |
|- ( g = ( f ++ <" p "> ) -> ( ( ( ph /\ ( M gsum g ) e. I /\ ( M gsum g ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` g ) ) ( g ` i ) e. I ) <-> ( ( ph /\ ( M gsum ( f ++ <" p "> ) ) e. I /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) ) ) |
| 50 |
|
oveq2 |
|- ( g = F -> ( M gsum g ) = ( M gsum F ) ) |
| 51 |
50
|
eleq1d |
|- ( g = F -> ( ( M gsum g ) e. I <-> ( M gsum F ) e. I ) ) |
| 52 |
50
|
neeq1d |
|- ( g = F -> ( ( M gsum g ) =/= .0. <-> ( M gsum F ) =/= .0. ) ) |
| 53 |
51 52
|
3anbi23d |
|- ( g = F -> ( ( ph /\ ( M gsum g ) e. I /\ ( M gsum g ) =/= .0. ) <-> ( ph /\ ( M gsum F ) e. I /\ ( M gsum F ) =/= .0. ) ) ) |
| 54 |
|
fveq2 |
|- ( g = F -> ( # ` g ) = ( # ` F ) ) |
| 55 |
54
|
oveq2d |
|- ( g = F -> ( 0 ..^ ( # ` g ) ) = ( 0 ..^ ( # ` F ) ) ) |
| 56 |
|
fveq1 |
|- ( g = F -> ( g ` i ) = ( F ` i ) ) |
| 57 |
56
|
eleq1d |
|- ( g = F -> ( ( g ` i ) e. I <-> ( F ` i ) e. I ) ) |
| 58 |
55 57
|
rexeqbidv |
|- ( g = F -> ( E. i e. ( 0 ..^ ( # ` g ) ) ( g ` i ) e. I <-> E. i e. ( 0 ..^ ( # ` F ) ) ( F ` i ) e. I ) ) |
| 59 |
53 58
|
imbi12d |
|- ( g = F -> ( ( ( ph /\ ( M gsum g ) e. I /\ ( M gsum g ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` g ) ) ( g ` i ) e. I ) <-> ( ( ph /\ ( M gsum F ) e. I /\ ( M gsum F ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` F ) ) ( F ` i ) e. I ) ) ) |
| 60 |
6
|
idomringd |
|- ( ph -> R e. Ring ) |
| 61 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 62 |
3 61
|
1unit |
|- ( R e. Ring -> ( 1r ` R ) e. U ) |
| 63 |
60 62
|
syl |
|- ( ph -> ( 1r ` R ) e. U ) |
| 64 |
63
|
ad2antrr |
|- ( ( ( ph /\ ( M gsum (/) ) e. I ) /\ ( M gsum (/) ) =/= .0. ) -> ( 1r ` R ) e. U ) |
| 65 |
5 61
|
ringidval |
|- ( 1r ` R ) = ( 0g ` M ) |
| 66 |
65
|
gsum0 |
|- ( M gsum (/) ) = ( 1r ` R ) |
| 67 |
|
simplr |
|- ( ( ( ph /\ ( M gsum (/) ) e. I ) /\ ( M gsum (/) ) =/= .0. ) -> ( M gsum (/) ) e. I ) |
| 68 |
66 67
|
eqeltrrid |
|- ( ( ( ph /\ ( M gsum (/) ) e. I ) /\ ( M gsum (/) ) =/= .0. ) -> ( 1r ` R ) e. I ) |
| 69 |
60
|
ad2antrr |
|- ( ( ( ph /\ ( M gsum (/) ) e. I ) /\ ( M gsum (/) ) =/= .0. ) -> R e. Ring ) |
| 70 |
7
|
ad2antrr |
|- ( ( ( ph /\ ( M gsum (/) ) e. I ) /\ ( M gsum (/) ) =/= .0. ) -> I e. ( PrmIdeal ` R ) ) |
| 71 |
|
prmidlidl |
|- ( ( R e. Ring /\ I e. ( PrmIdeal ` R ) ) -> I e. ( LIdeal ` R ) ) |
| 72 |
69 70 71
|
syl2anc |
|- ( ( ( ph /\ ( M gsum (/) ) e. I ) /\ ( M gsum (/) ) =/= .0. ) -> I e. ( LIdeal ` R ) ) |
| 73 |
1 3 64 68 69 72
|
lidlunitel |
|- ( ( ( ph /\ ( M gsum (/) ) e. I ) /\ ( M gsum (/) ) =/= .0. ) -> I = B ) |
| 74 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 75 |
1 74
|
prmidlnr |
|- ( ( R e. Ring /\ I e. ( PrmIdeal ` R ) ) -> I =/= B ) |
| 76 |
69 70 75
|
syl2anc |
|- ( ( ( ph /\ ( M gsum (/) ) e. I ) /\ ( M gsum (/) ) =/= .0. ) -> I =/= B ) |
| 77 |
73 76
|
pm2.21ddne |
|- ( ( ( ph /\ ( M gsum (/) ) e. I ) /\ ( M gsum (/) ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` (/) ) ) ( (/) ` i ) e. I ) |
| 78 |
77
|
3impa |
|- ( ( ph /\ ( M gsum (/) ) e. I /\ ( M gsum (/) ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` (/) ) ) ( (/) ` i ) e. I ) |
| 79 |
|
simpllr |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ph ) |
| 80 |
|
simp-4r |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( M gsum f ) e. I ) |
| 81 |
6
|
idomdomd |
|- ( ph -> R e. Domn ) |
| 82 |
81
|
ad3antlr |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> R e. Domn ) |
| 83 |
6
|
adantr |
|- ( ( ph /\ p e. P ) -> R e. IDomn ) |
| 84 |
|
simpr |
|- ( ( ph /\ p e. P ) -> p e. P ) |
| 85 |
1 4 83 84
|
rprmcl |
|- ( ( ph /\ p e. P ) -> p e. B ) |
| 86 |
4 2 83 84
|
rprmnz |
|- ( ( ph /\ p e. P ) -> p =/= .0. ) |
| 87 |
85 86
|
eldifsnd |
|- ( ( ph /\ p e. P ) -> p e. ( B \ { .0. } ) ) |
| 88 |
87
|
ex |
|- ( ph -> ( p e. P -> p e. ( B \ { .0. } ) ) ) |
| 89 |
88
|
ssrdv |
|- ( ph -> P C_ ( B \ { .0. } ) ) |
| 90 |
|
sswrd |
|- ( P C_ ( B \ { .0. } ) -> Word P C_ Word ( B \ { .0. } ) ) |
| 91 |
89 90
|
syl |
|- ( ph -> Word P C_ Word ( B \ { .0. } ) ) |
| 92 |
91
|
ad3antlr |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> Word P C_ Word ( B \ { .0. } ) ) |
| 93 |
|
simpll |
|- ( ( ( f e. Word P /\ p e. P ) /\ ph ) -> f e. Word P ) |
| 94 |
93
|
ad5ant13 |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> f e. Word P ) |
| 95 |
92 94
|
sseldd |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> f e. Word ( B \ { .0. } ) ) |
| 96 |
1 5 2 82 95
|
domnprodn0 |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( M gsum f ) =/= .0. ) |
| 97 |
79 80 96
|
3jca |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) ) |
| 98 |
|
lencl |
|- ( f e. Word P -> ( # ` f ) e. NN0 ) |
| 99 |
|
fzossfzop1 |
|- ( ( # ` f ) e. NN0 -> ( 0 ..^ ( # ` f ) ) C_ ( 0 ..^ ( ( # ` f ) + 1 ) ) ) |
| 100 |
94 98 99
|
3syl |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( 0 ..^ ( # ` f ) ) C_ ( 0 ..^ ( ( # ` f ) + 1 ) ) ) |
| 101 |
|
ccatws1len |
|- ( f e. Word P -> ( # ` ( f ++ <" p "> ) ) = ( ( # ` f ) + 1 ) ) |
| 102 |
94 101
|
syl |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( # ` ( f ++ <" p "> ) ) = ( ( # ` f ) + 1 ) ) |
| 103 |
102
|
oveq2d |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) = ( 0 ..^ ( ( # ` f ) + 1 ) ) ) |
| 104 |
100 103
|
sseqtrrd |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( 0 ..^ ( # ` f ) ) C_ ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ) |
| 105 |
94
|
ad2antrr |
|- ( ( ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) /\ i e. ( 0 ..^ ( # ` f ) ) ) /\ ( f ` i ) e. I ) -> f e. Word P ) |
| 106 |
|
simplr |
|- ( ( ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) /\ i e. ( 0 ..^ ( # ` f ) ) ) /\ ( f ` i ) e. I ) -> i e. ( 0 ..^ ( # ` f ) ) ) |
| 107 |
|
ccats1val1 |
|- ( ( f e. Word P /\ i e. ( 0 ..^ ( # ` f ) ) ) -> ( ( f ++ <" p "> ) ` i ) = ( f ` i ) ) |
| 108 |
105 106 107
|
syl2anc |
|- ( ( ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) /\ i e. ( 0 ..^ ( # ` f ) ) ) /\ ( f ` i ) e. I ) -> ( ( f ++ <" p "> ) ` i ) = ( f ` i ) ) |
| 109 |
|
simpr |
|- ( ( ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) /\ i e. ( 0 ..^ ( # ` f ) ) ) /\ ( f ` i ) e. I ) -> ( f ` i ) e. I ) |
| 110 |
108 109
|
eqeltrd |
|- ( ( ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) /\ i e. ( 0 ..^ ( # ` f ) ) ) /\ ( f ` i ) e. I ) -> ( ( f ++ <" p "> ) ` i ) e. I ) |
| 111 |
110
|
ex |
|- ( ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) /\ i e. ( 0 ..^ ( # ` f ) ) ) -> ( ( f ` i ) e. I -> ( ( f ++ <" p "> ) ` i ) e. I ) ) |
| 112 |
111
|
reximdva |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I -> E. i e. ( 0 ..^ ( # ` f ) ) ( ( f ++ <" p "> ) ` i ) e. I ) ) |
| 113 |
|
ssrexv |
|- ( ( 0 ..^ ( # ` f ) ) C_ ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) -> ( E. i e. ( 0 ..^ ( # ` f ) ) ( ( f ++ <" p "> ) ` i ) e. I -> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) ) |
| 114 |
104 112 113
|
sylsyld |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I -> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) ) |
| 115 |
97 114
|
embantd |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) -> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) ) |
| 116 |
115
|
imp |
|- ( ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( M gsum f ) e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) -> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) |
| 117 |
116
|
an62ds |
|- ( ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) /\ ( M gsum f ) e. I ) -> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) |
| 118 |
|
fveq2 |
|- ( i = ( # ` f ) -> ( ( f ++ <" p "> ) ` i ) = ( ( f ++ <" p "> ) ` ( # ` f ) ) ) |
| 119 |
118
|
eleq1d |
|- ( i = ( # ` f ) -> ( ( ( f ++ <" p "> ) ` i ) e. I <-> ( ( f ++ <" p "> ) ` ( # ` f ) ) e. I ) ) |
| 120 |
98
|
ad5antr |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ p e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( # ` f ) e. NN0 ) |
| 121 |
|
fzonn0p1 |
|- ( ( # ` f ) e. NN0 -> ( # ` f ) e. ( 0 ..^ ( ( # ` f ) + 1 ) ) ) |
| 122 |
120 121
|
syl |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ p e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( # ` f ) e. ( 0 ..^ ( ( # ` f ) + 1 ) ) ) |
| 123 |
101
|
ad5antr |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ p e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( # ` ( f ++ <" p "> ) ) = ( ( # ` f ) + 1 ) ) |
| 124 |
123
|
oveq2d |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ p e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) = ( 0 ..^ ( ( # ` f ) + 1 ) ) ) |
| 125 |
122 124
|
eleqtrrd |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ p e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( # ` f ) e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ) |
| 126 |
|
ccatws1ls |
|- ( ( f e. Word P /\ p e. P ) -> ( ( f ++ <" p "> ) ` ( # ` f ) ) = p ) |
| 127 |
126
|
ad4antr |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ p e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( ( f ++ <" p "> ) ` ( # ` f ) ) = p ) |
| 128 |
|
simp-4r |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ p e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> p e. I ) |
| 129 |
127 128
|
eqeltrd |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ p e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( ( f ++ <" p "> ) ` ( # ` f ) ) e. I ) |
| 130 |
119 125 129
|
rspcedvdw |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ p e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) |
| 131 |
130
|
adantr |
|- ( ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ p e. I ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) -> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) |
| 132 |
131
|
an62ds |
|- ( ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) /\ p e. I ) -> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) |
| 133 |
6
|
idomcringd |
|- ( ph -> R e. CRing ) |
| 134 |
133
|
ad3antlr |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> R e. CRing ) |
| 135 |
7
|
ad3antlr |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> I e. ( PrmIdeal ` R ) ) |
| 136 |
5 1
|
mgpbas |
|- B = ( Base ` M ) |
| 137 |
5
|
crngmgp |
|- ( R e. CRing -> M e. CMnd ) |
| 138 |
133 137
|
syl |
|- ( ph -> M e. CMnd ) |
| 139 |
138
|
adantl |
|- ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) -> M e. CMnd ) |
| 140 |
|
ovexd |
|- ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) -> ( 0 ..^ ( # ` f ) ) e. _V ) |
| 141 |
|
eqidd |
|- ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) -> ( # ` f ) = ( # ` f ) ) |
| 142 |
|
simplll |
|- ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) -> f e. Word P ) |
| 143 |
141 142
|
wrdfd |
|- ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) -> f : ( 0 ..^ ( # ` f ) ) --> P ) |
| 144 |
85
|
ex |
|- ( ph -> ( p e. P -> p e. B ) ) |
| 145 |
144
|
ssrdv |
|- ( ph -> P C_ B ) |
| 146 |
145
|
adantl |
|- ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) -> P C_ B ) |
| 147 |
143 146
|
fssd |
|- ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) -> f : ( 0 ..^ ( # ` f ) ) --> B ) |
| 148 |
|
fvexd |
|- ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) -> ( 1r ` R ) e. _V ) |
| 149 |
148 142
|
wrdfsupp |
|- ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) -> f finSupp ( 1r ` R ) ) |
| 150 |
136 65 139 140 147 149
|
gsumcl |
|- ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) -> ( M gsum f ) e. B ) |
| 151 |
150
|
ad2antrr |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( M gsum f ) e. B ) |
| 152 |
145
|
adantl |
|- ( ( ( f e. Word P /\ p e. P ) /\ ph ) -> P C_ B ) |
| 153 |
|
simplr |
|- ( ( ( f e. Word P /\ p e. P ) /\ ph ) -> p e. P ) |
| 154 |
152 153
|
sseldd |
|- ( ( ( f e. Word P /\ p e. P ) /\ ph ) -> p e. B ) |
| 155 |
154
|
ad5ant13 |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> p e. B ) |
| 156 |
138
|
cmnmndd |
|- ( ph -> M e. Mnd ) |
| 157 |
156
|
adantl |
|- ( ( ( f e. Word P /\ p e. P ) /\ ph ) -> M e. Mnd ) |
| 158 |
|
sswrd |
|- ( P C_ B -> Word P C_ Word B ) |
| 159 |
145 158
|
syl |
|- ( ph -> Word P C_ Word B ) |
| 160 |
159
|
adantl |
|- ( ( ( f e. Word P /\ p e. P ) /\ ph ) -> Word P C_ Word B ) |
| 161 |
160 93
|
sseldd |
|- ( ( ( f e. Word P /\ p e. P ) /\ ph ) -> f e. Word B ) |
| 162 |
5 74
|
mgpplusg |
|- ( .r ` R ) = ( +g ` M ) |
| 163 |
136 162
|
gsumccatsn |
|- ( ( M e. Mnd /\ f e. Word B /\ p e. B ) -> ( M gsum ( f ++ <" p "> ) ) = ( ( M gsum f ) ( .r ` R ) p ) ) |
| 164 |
157 161 154 163
|
syl3anc |
|- ( ( ( f e. Word P /\ p e. P ) /\ ph ) -> ( M gsum ( f ++ <" p "> ) ) = ( ( M gsum f ) ( .r ` R ) p ) ) |
| 165 |
164
|
ad5ant13 |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( M gsum ( f ++ <" p "> ) ) = ( ( M gsum f ) ( .r ` R ) p ) ) |
| 166 |
|
simplr |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( M gsum ( f ++ <" p "> ) ) e. I ) |
| 167 |
165 166
|
eqeltrrd |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( ( M gsum f ) ( .r ` R ) p ) e. I ) |
| 168 |
1 74
|
prmidlc |
|- ( ( ( R e. CRing /\ I e. ( PrmIdeal ` R ) ) /\ ( ( M gsum f ) e. B /\ p e. B /\ ( ( M gsum f ) ( .r ` R ) p ) e. I ) ) -> ( ( M gsum f ) e. I \/ p e. I ) ) |
| 169 |
134 135 151 155 167 168
|
syl23anc |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> ( ( M gsum f ) e. I \/ p e. I ) ) |
| 170 |
117 132 169
|
mpjaodan |
|- ( ( ( ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) /\ ph ) /\ ( M gsum ( f ++ <" p "> ) ) e. I ) /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) |
| 171 |
170
|
exp41 |
|- ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) -> ( ph -> ( ( M gsum ( f ++ <" p "> ) ) e. I -> ( ( M gsum ( f ++ <" p "> ) ) =/= .0. -> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) ) ) ) |
| 172 |
171
|
3impd |
|- ( ( ( f e. Word P /\ p e. P ) /\ ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) ) -> ( ( ph /\ ( M gsum ( f ++ <" p "> ) ) e. I /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) ) |
| 173 |
172
|
ex |
|- ( ( f e. Word P /\ p e. P ) -> ( ( ( ph /\ ( M gsum f ) e. I /\ ( M gsum f ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` f ) ) ( f ` i ) e. I ) -> ( ( ph /\ ( M gsum ( f ++ <" p "> ) ) e. I /\ ( M gsum ( f ++ <" p "> ) ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` ( f ++ <" p "> ) ) ) ( ( f ++ <" p "> ) ` i ) e. I ) ) ) |
| 174 |
29 39 49 59 78 173
|
wrdind |
|- ( F e. Word P -> ( ( ph /\ ( M gsum F ) e. I /\ ( M gsum F ) =/= .0. ) -> E. i e. ( 0 ..^ ( # ` F ) ) ( F ` i ) e. I ) ) |
| 175 |
174
|
imp |
|- ( ( F e. Word P /\ ( ph /\ ( M gsum F ) e. I /\ ( M gsum F ) =/= .0. ) ) -> E. i e. ( 0 ..^ ( # ` F ) ) ( F ` i ) e. I ) |
| 176 |
8 19 9 10 175
|
syl13anc |
|- ( ph -> E. i e. ( 0 ..^ ( # ` F ) ) ( F ` i ) e. I ) |
| 177 |
18 176
|
r19.29a |
|- ( ph -> ( I i^i P ) =/= (/) ) |