| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfufd2.b |
|- B = ( Base ` R ) |
| 2 |
|
dfufd2.0 |
|- .0. = ( 0g ` R ) |
| 3 |
|
dfufd2.u |
|- U = ( Unit ` R ) |
| 4 |
|
dfufd2.p |
|- P = ( RPrime ` R ) |
| 5 |
|
dfufd2.m |
|- M = ( mulGrp ` R ) |
| 6 |
|
id |
|- ( R e. UFD -> R e. UFD ) |
| 7 |
6
|
ufdidom |
|- ( R e. UFD -> R e. IDomn ) |
| 8 |
|
simpl |
|- ( ( R e. UFD /\ x e. ( ( B \ U ) \ { .0. } ) ) -> R e. UFD ) |
| 9 |
|
simpr |
|- ( ( R e. UFD /\ x e. ( ( B \ U ) \ { .0. } ) ) -> x e. ( ( B \ U ) \ { .0. } ) ) |
| 10 |
9
|
eldifad |
|- ( ( R e. UFD /\ x e. ( ( B \ U ) \ { .0. } ) ) -> x e. ( B \ U ) ) |
| 11 |
10
|
eldifad |
|- ( ( R e. UFD /\ x e. ( ( B \ U ) \ { .0. } ) ) -> x e. B ) |
| 12 |
10
|
eldifbd |
|- ( ( R e. UFD /\ x e. ( ( B \ U ) \ { .0. } ) ) -> -. x e. U ) |
| 13 |
|
eldifsni |
|- ( x e. ( ( B \ U ) \ { .0. } ) -> x =/= .0. ) |
| 14 |
13
|
adantl |
|- ( ( R e. UFD /\ x e. ( ( B \ U ) \ { .0. } ) ) -> x =/= .0. ) |
| 15 |
1 2 3 4 5 8 11 12 14
|
1arithufd |
|- ( ( R e. UFD /\ x e. ( ( B \ U ) \ { .0. } ) ) -> E. f e. Word P x = ( M gsum f ) ) |
| 16 |
15
|
ralrimiva |
|- ( R e. UFD -> A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) |
| 17 |
7 16
|
jca |
|- ( R e. UFD -> ( R e. IDomn /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) ) |
| 18 |
|
simpl |
|- ( ( R e. IDomn /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) -> R e. IDomn ) |
| 19 |
|
id |
|- ( R e. IDomn -> R e. IDomn ) |
| 20 |
19
|
idomringd |
|- ( R e. IDomn -> R e. Ring ) |
| 21 |
20
|
ad2antrr |
|- ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> R e. Ring ) |
| 22 |
|
simpr |
|- ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) |
| 23 |
22
|
eldifad |
|- ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> i e. ( PrmIdeal ` R ) ) |
| 24 |
|
prmidlidl |
|- ( ( R e. Ring /\ i e. ( PrmIdeal ` R ) ) -> i e. ( LIdeal ` R ) ) |
| 25 |
21 23 24
|
syl2anc |
|- ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> i e. ( LIdeal ` R ) ) |
| 26 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 27 |
1 26
|
lidlss |
|- ( i e. ( LIdeal ` R ) -> i C_ B ) |
| 28 |
25 27
|
syl |
|- ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> i C_ B ) |
| 29 |
28
|
sselda |
|- ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) -> y e. B ) |
| 30 |
|
simpr |
|- ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ y e. U ) -> y e. U ) |
| 31 |
|
simplr |
|- ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ y e. U ) -> y e. i ) |
| 32 |
21
|
ad2antrr |
|- ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ y e. U ) -> R e. Ring ) |
| 33 |
25
|
ad2antrr |
|- ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ y e. U ) -> i e. ( LIdeal ` R ) ) |
| 34 |
1 3 30 31 32 33
|
lidlunitel |
|- ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ y e. U ) -> i = B ) |
| 35 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 36 |
1 35
|
prmidlnr |
|- ( ( R e. Ring /\ i e. ( PrmIdeal ` R ) ) -> i =/= B ) |
| 37 |
21 23 36
|
syl2anc |
|- ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> i =/= B ) |
| 38 |
37
|
ad2antrr |
|- ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ y e. U ) -> i =/= B ) |
| 39 |
38
|
neneqd |
|- ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ y e. U ) -> -. i = B ) |
| 40 |
34 39
|
pm2.65da |
|- ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) -> -. y e. U ) |
| 41 |
29 40
|
eldifd |
|- ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) -> y e. ( B \ U ) ) |
| 42 |
|
simpllr |
|- ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) -> y =/= .0. ) |
| 43 |
41 42
|
eldifsnd |
|- ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) -> y e. ( ( B \ U ) \ { .0. } ) ) |
| 44 |
|
eqeq1 |
|- ( x = y -> ( x = ( M gsum f ) <-> y = ( M gsum f ) ) ) |
| 45 |
44
|
rexbidv |
|- ( x = y -> ( E. f e. Word P x = ( M gsum f ) <-> E. f e. Word P y = ( M gsum f ) ) ) |
| 46 |
45
|
adantl |
|- ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ x = y ) -> ( E. f e. Word P x = ( M gsum f ) <-> E. f e. Word P y = ( M gsum f ) ) ) |
| 47 |
43 46
|
rspcdv |
|- ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) -> ( A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) -> E. f e. Word P y = ( M gsum f ) ) ) |
| 48 |
|
simp-5l |
|- ( ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ f e. Word P ) /\ y = ( M gsum f ) ) -> R e. IDomn ) |
| 49 |
23
|
ad3antrrr |
|- ( ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ f e. Word P ) /\ y = ( M gsum f ) ) -> i e. ( PrmIdeal ` R ) ) |
| 50 |
|
simplr |
|- ( ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ f e. Word P ) /\ y = ( M gsum f ) ) -> f e. Word P ) |
| 51 |
|
simpr |
|- ( ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ f e. Word P ) /\ y = ( M gsum f ) ) -> y = ( M gsum f ) ) |
| 52 |
|
simpllr |
|- ( ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ f e. Word P ) /\ y = ( M gsum f ) ) -> y e. i ) |
| 53 |
51 52
|
eqeltrrd |
|- ( ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ f e. Word P ) /\ y = ( M gsum f ) ) -> ( M gsum f ) e. i ) |
| 54 |
42
|
ad2antrr |
|- ( ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ f e. Word P ) /\ y = ( M gsum f ) ) -> y =/= .0. ) |
| 55 |
51 54
|
eqnetrrd |
|- ( ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ f e. Word P ) /\ y = ( M gsum f ) ) -> ( M gsum f ) =/= .0. ) |
| 56 |
1 2 3 4 5 48 49 50 53 55
|
dfufd2lem |
|- ( ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ f e. Word P ) /\ y = ( M gsum f ) ) -> ( i i^i P ) =/= (/) ) |
| 57 |
56
|
rexlimdva2 |
|- ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) -> ( E. f e. Word P y = ( M gsum f ) -> ( i i^i P ) =/= (/) ) ) |
| 58 |
47 57
|
syld |
|- ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) -> ( A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) -> ( i i^i P ) =/= (/) ) ) |
| 59 |
58
|
imp |
|- ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) -> ( i i^i P ) =/= (/) ) |
| 60 |
59
|
an52ds |
|- ( ( ( ( ( R e. IDomn /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ y =/= .0. ) -> ( i i^i P ) =/= (/) ) |
| 61 |
20
|
ad2antrr |
|- ( ( ( R e. IDomn /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> R e. Ring ) |
| 62 |
|
simpr |
|- ( ( ( R e. IDomn /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) |
| 63 |
62
|
eldifad |
|- ( ( ( R e. IDomn /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> i e. ( PrmIdeal ` R ) ) |
| 64 |
61 63 24
|
syl2anc |
|- ( ( ( R e. IDomn /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> i e. ( LIdeal ` R ) ) |
| 65 |
|
eldifsni |
|- ( i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) -> i =/= { .0. } ) |
| 66 |
65
|
adantl |
|- ( ( ( R e. IDomn /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> i =/= { .0. } ) |
| 67 |
26 2
|
lidlnz |
|- ( ( R e. Ring /\ i e. ( LIdeal ` R ) /\ i =/= { .0. } ) -> E. y e. i y =/= .0. ) |
| 68 |
61 64 66 67
|
syl3anc |
|- ( ( ( R e. IDomn /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> E. y e. i y =/= .0. ) |
| 69 |
60 68
|
r19.29a |
|- ( ( ( R e. IDomn /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> ( i i^i P ) =/= (/) ) |
| 70 |
69
|
ralrimiva |
|- ( ( R e. IDomn /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) -> A. i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ( i i^i P ) =/= (/) ) |
| 71 |
|
eqid |
|- ( PrmIdeal ` R ) = ( PrmIdeal ` R ) |
| 72 |
71 4 2
|
isufd |
|- ( R e. UFD <-> ( R e. IDomn /\ A. i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ( i i^i P ) =/= (/) ) ) |
| 73 |
18 70 72
|
sylanbrc |
|- ( ( R e. IDomn /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) -> R e. UFD ) |
| 74 |
17 73
|
impbii |
|- ( R e. UFD <-> ( R e. IDomn /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) ) |