| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfufd2.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | dfufd2.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 3 |  | dfufd2.u |  |-  U = ( Unit ` R ) | 
						
							| 4 |  | dfufd2.p |  |-  P = ( RPrime ` R ) | 
						
							| 5 |  | dfufd2.m |  |-  M = ( mulGrp ` R ) | 
						
							| 6 |  | id |  |-  ( R e. UFD -> R e. UFD ) | 
						
							| 7 | 6 | ufdidom |  |-  ( R e. UFD -> R e. IDomn ) | 
						
							| 8 |  | simpl |  |-  ( ( R e. UFD /\ x e. ( ( B \ U ) \ { .0. } ) ) -> R e. UFD ) | 
						
							| 9 |  | simpr |  |-  ( ( R e. UFD /\ x e. ( ( B \ U ) \ { .0. } ) ) -> x e. ( ( B \ U ) \ { .0. } ) ) | 
						
							| 10 | 9 | eldifad |  |-  ( ( R e. UFD /\ x e. ( ( B \ U ) \ { .0. } ) ) -> x e. ( B \ U ) ) | 
						
							| 11 | 10 | eldifad |  |-  ( ( R e. UFD /\ x e. ( ( B \ U ) \ { .0. } ) ) -> x e. B ) | 
						
							| 12 | 10 | eldifbd |  |-  ( ( R e. UFD /\ x e. ( ( B \ U ) \ { .0. } ) ) -> -. x e. U ) | 
						
							| 13 |  | eldifsni |  |-  ( x e. ( ( B \ U ) \ { .0. } ) -> x =/= .0. ) | 
						
							| 14 | 13 | adantl |  |-  ( ( R e. UFD /\ x e. ( ( B \ U ) \ { .0. } ) ) -> x =/= .0. ) | 
						
							| 15 | 1 2 3 4 5 8 11 12 14 | 1arithufd |  |-  ( ( R e. UFD /\ x e. ( ( B \ U ) \ { .0. } ) ) -> E. f e. Word P x = ( M gsum f ) ) | 
						
							| 16 | 15 | ralrimiva |  |-  ( R e. UFD -> A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) | 
						
							| 17 | 7 16 | jca |  |-  ( R e. UFD -> ( R e. IDomn /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) ) | 
						
							| 18 |  | simpl |  |-  ( ( R e. IDomn /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) -> R e. IDomn ) | 
						
							| 19 |  | id |  |-  ( R e. IDomn -> R e. IDomn ) | 
						
							| 20 | 19 | idomringd |  |-  ( R e. IDomn -> R e. Ring ) | 
						
							| 21 | 20 | ad2antrr |  |-  ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> R e. Ring ) | 
						
							| 22 |  | simpr |  |-  ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) | 
						
							| 23 | 22 | eldifad |  |-  ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> i e. ( PrmIdeal ` R ) ) | 
						
							| 24 |  | prmidlidl |  |-  ( ( R e. Ring /\ i e. ( PrmIdeal ` R ) ) -> i e. ( LIdeal ` R ) ) | 
						
							| 25 | 21 23 24 | syl2anc |  |-  ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> i e. ( LIdeal ` R ) ) | 
						
							| 26 |  | eqid |  |-  ( LIdeal ` R ) = ( LIdeal ` R ) | 
						
							| 27 | 1 26 | lidlss |  |-  ( i e. ( LIdeal ` R ) -> i C_ B ) | 
						
							| 28 | 25 27 | syl |  |-  ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> i C_ B ) | 
						
							| 29 | 28 | sselda |  |-  ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) -> y e. B ) | 
						
							| 30 |  | simpr |  |-  ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ y e. U ) -> y e. U ) | 
						
							| 31 |  | simplr |  |-  ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ y e. U ) -> y e. i ) | 
						
							| 32 | 21 | ad2antrr |  |-  ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ y e. U ) -> R e. Ring ) | 
						
							| 33 | 25 | ad2antrr |  |-  ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ y e. U ) -> i e. ( LIdeal ` R ) ) | 
						
							| 34 | 1 3 30 31 32 33 | lidlunitel |  |-  ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ y e. U ) -> i = B ) | 
						
							| 35 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 36 | 1 35 | prmidlnr |  |-  ( ( R e. Ring /\ i e. ( PrmIdeal ` R ) ) -> i =/= B ) | 
						
							| 37 | 21 23 36 | syl2anc |  |-  ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> i =/= B ) | 
						
							| 38 | 37 | ad2antrr |  |-  ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ y e. U ) -> i =/= B ) | 
						
							| 39 | 38 | neneqd |  |-  ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ y e. U ) -> -. i = B ) | 
						
							| 40 | 34 39 | pm2.65da |  |-  ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) -> -. y e. U ) | 
						
							| 41 | 29 40 | eldifd |  |-  ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) -> y e. ( B \ U ) ) | 
						
							| 42 |  | simpllr |  |-  ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) -> y =/= .0. ) | 
						
							| 43 | 41 42 | eldifsnd |  |-  ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) -> y e. ( ( B \ U ) \ { .0. } ) ) | 
						
							| 44 |  | eqeq1 |  |-  ( x = y -> ( x = ( M gsum f ) <-> y = ( M gsum f ) ) ) | 
						
							| 45 | 44 | rexbidv |  |-  ( x = y -> ( E. f e. Word P x = ( M gsum f ) <-> E. f e. Word P y = ( M gsum f ) ) ) | 
						
							| 46 | 45 | adantl |  |-  ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ x = y ) -> ( E. f e. Word P x = ( M gsum f ) <-> E. f e. Word P y = ( M gsum f ) ) ) | 
						
							| 47 | 43 46 | rspcdv |  |-  ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) -> ( A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) -> E. f e. Word P y = ( M gsum f ) ) ) | 
						
							| 48 |  | simp-5l |  |-  ( ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ f e. Word P ) /\ y = ( M gsum f ) ) -> R e. IDomn ) | 
						
							| 49 | 23 | ad3antrrr |  |-  ( ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ f e. Word P ) /\ y = ( M gsum f ) ) -> i e. ( PrmIdeal ` R ) ) | 
						
							| 50 |  | simplr |  |-  ( ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ f e. Word P ) /\ y = ( M gsum f ) ) -> f e. Word P ) | 
						
							| 51 |  | simpr |  |-  ( ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ f e. Word P ) /\ y = ( M gsum f ) ) -> y = ( M gsum f ) ) | 
						
							| 52 |  | simpllr |  |-  ( ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ f e. Word P ) /\ y = ( M gsum f ) ) -> y e. i ) | 
						
							| 53 | 51 52 | eqeltrrd |  |-  ( ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ f e. Word P ) /\ y = ( M gsum f ) ) -> ( M gsum f ) e. i ) | 
						
							| 54 | 42 | ad2antrr |  |-  ( ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ f e. Word P ) /\ y = ( M gsum f ) ) -> y =/= .0. ) | 
						
							| 55 | 51 54 | eqnetrrd |  |-  ( ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ f e. Word P ) /\ y = ( M gsum f ) ) -> ( M gsum f ) =/= .0. ) | 
						
							| 56 | 1 2 3 4 5 48 49 50 53 55 | dfufd2lem |  |-  ( ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ f e. Word P ) /\ y = ( M gsum f ) ) -> ( i i^i P ) =/= (/) ) | 
						
							| 57 | 56 | rexlimdva2 |  |-  ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) -> ( E. f e. Word P y = ( M gsum f ) -> ( i i^i P ) =/= (/) ) ) | 
						
							| 58 | 47 57 | syld |  |-  ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) -> ( A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) -> ( i i^i P ) =/= (/) ) ) | 
						
							| 59 | 58 | imp |  |-  ( ( ( ( ( R e. IDomn /\ y =/= .0. ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) -> ( i i^i P ) =/= (/) ) | 
						
							| 60 | 59 | an52ds |  |-  ( ( ( ( ( R e. IDomn /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) /\ y e. i ) /\ y =/= .0. ) -> ( i i^i P ) =/= (/) ) | 
						
							| 61 | 20 | ad2antrr |  |-  ( ( ( R e. IDomn /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> R e. Ring ) | 
						
							| 62 |  | simpr |  |-  ( ( ( R e. IDomn /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) | 
						
							| 63 | 62 | eldifad |  |-  ( ( ( R e. IDomn /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> i e. ( PrmIdeal ` R ) ) | 
						
							| 64 | 61 63 24 | syl2anc |  |-  ( ( ( R e. IDomn /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> i e. ( LIdeal ` R ) ) | 
						
							| 65 |  | eldifsni |  |-  ( i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) -> i =/= { .0. } ) | 
						
							| 66 | 65 | adantl |  |-  ( ( ( R e. IDomn /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> i =/= { .0. } ) | 
						
							| 67 | 26 2 | lidlnz |  |-  ( ( R e. Ring /\ i e. ( LIdeal ` R ) /\ i =/= { .0. } ) -> E. y e. i y =/= .0. ) | 
						
							| 68 | 61 64 66 67 | syl3anc |  |-  ( ( ( R e. IDomn /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> E. y e. i y =/= .0. ) | 
						
							| 69 | 60 68 | r19.29a |  |-  ( ( ( R e. IDomn /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) /\ i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ) -> ( i i^i P ) =/= (/) ) | 
						
							| 70 | 69 | ralrimiva |  |-  ( ( R e. IDomn /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) -> A. i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ( i i^i P ) =/= (/) ) | 
						
							| 71 |  | eqid |  |-  ( PrmIdeal ` R ) = ( PrmIdeal ` R ) | 
						
							| 72 | 71 4 2 | isufd |  |-  ( R e. UFD <-> ( R e. IDomn /\ A. i e. ( ( PrmIdeal ` R ) \ { { .0. } } ) ( i i^i P ) =/= (/) ) ) | 
						
							| 73 | 18 70 72 | sylanbrc |  |-  ( ( R e. IDomn /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) -> R e. UFD ) | 
						
							| 74 | 17 73 | impbii |  |-  ( R e. UFD <-> ( R e. IDomn /\ A. x e. ( ( B \ U ) \ { .0. } ) E. f e. Word P x = ( M gsum f ) ) ) |