Metamath Proof Explorer


Theorem dfufd2

Description: Alternative definition of unique factorization domain (UFD). This is often the textbook definition. Chapter VII, Paragraph 3, Section 3, Proposition 2 of BourbakiCAlg2, p. 228. (Contributed by Thierry Arnoux, 6-Jun-2025)

Ref Expression
Hypotheses dfufd2.b B = Base R
dfufd2.0 0 ˙ = 0 R
dfufd2.u U = Unit R
dfufd2.p P = RPrime R
dfufd2.m M = mulGrp R
Assertion dfufd2 R UFD R IDomn x B U 0 ˙ f Word P x = M f

Proof

Step Hyp Ref Expression
1 dfufd2.b B = Base R
2 dfufd2.0 0 ˙ = 0 R
3 dfufd2.u U = Unit R
4 dfufd2.p P = RPrime R
5 dfufd2.m M = mulGrp R
6 id R UFD R UFD
7 6 ufdidom R UFD R IDomn
8 simpl R UFD x B U 0 ˙ R UFD
9 simpr R UFD x B U 0 ˙ x B U 0 ˙
10 9 eldifad R UFD x B U 0 ˙ x B U
11 10 eldifad R UFD x B U 0 ˙ x B
12 10 eldifbd R UFD x B U 0 ˙ ¬ x U
13 eldifsni x B U 0 ˙ x 0 ˙
14 13 adantl R UFD x B U 0 ˙ x 0 ˙
15 1 2 3 4 5 8 11 12 14 1arithufd R UFD x B U 0 ˙ f Word P x = M f
16 15 ralrimiva R UFD x B U 0 ˙ f Word P x = M f
17 7 16 jca R UFD R IDomn x B U 0 ˙ f Word P x = M f
18 simpl R IDomn x B U 0 ˙ f Word P x = M f R IDomn
19 id R IDomn R IDomn
20 19 idomringd R IDomn R Ring
21 20 ad2antrr R IDomn y 0 ˙ i PrmIdeal R 0 ˙ R Ring
22 simpr R IDomn y 0 ˙ i PrmIdeal R 0 ˙ i PrmIdeal R 0 ˙
23 22 eldifad R IDomn y 0 ˙ i PrmIdeal R 0 ˙ i PrmIdeal R
24 prmidlidl R Ring i PrmIdeal R i LIdeal R
25 21 23 24 syl2anc R IDomn y 0 ˙ i PrmIdeal R 0 ˙ i LIdeal R
26 eqid LIdeal R = LIdeal R
27 1 26 lidlss i LIdeal R i B
28 25 27 syl R IDomn y 0 ˙ i PrmIdeal R 0 ˙ i B
29 28 sselda R IDomn y 0 ˙ i PrmIdeal R 0 ˙ y i y B
30 simpr R IDomn y 0 ˙ i PrmIdeal R 0 ˙ y i y U y U
31 simplr R IDomn y 0 ˙ i PrmIdeal R 0 ˙ y i y U y i
32 21 ad2antrr R IDomn y 0 ˙ i PrmIdeal R 0 ˙ y i y U R Ring
33 25 ad2antrr R IDomn y 0 ˙ i PrmIdeal R 0 ˙ y i y U i LIdeal R
34 1 3 30 31 32 33 lidlunitel R IDomn y 0 ˙ i PrmIdeal R 0 ˙ y i y U i = B
35 eqid R = R
36 1 35 prmidlnr R Ring i PrmIdeal R i B
37 21 23 36 syl2anc R IDomn y 0 ˙ i PrmIdeal R 0 ˙ i B
38 37 ad2antrr R IDomn y 0 ˙ i PrmIdeal R 0 ˙ y i y U i B
39 38 neneqd R IDomn y 0 ˙ i PrmIdeal R 0 ˙ y i y U ¬ i = B
40 34 39 pm2.65da R IDomn y 0 ˙ i PrmIdeal R 0 ˙ y i ¬ y U
41 29 40 eldifd R IDomn y 0 ˙ i PrmIdeal R 0 ˙ y i y B U
42 simpllr R IDomn y 0 ˙ i PrmIdeal R 0 ˙ y i y 0 ˙
43 41 42 eldifsnd R IDomn y 0 ˙ i PrmIdeal R 0 ˙ y i y B U 0 ˙
44 eqeq1 x = y x = M f y = M f
45 44 rexbidv x = y f Word P x = M f f Word P y = M f
46 45 adantl R IDomn y 0 ˙ i PrmIdeal R 0 ˙ y i x = y f Word P x = M f f Word P y = M f
47 43 46 rspcdv R IDomn y 0 ˙ i PrmIdeal R 0 ˙ y i x B U 0 ˙ f Word P x = M f f Word P y = M f
48 simp-5l R IDomn y 0 ˙ i PrmIdeal R 0 ˙ y i f Word P y = M f R IDomn
49 23 ad3antrrr R IDomn y 0 ˙ i PrmIdeal R 0 ˙ y i f Word P y = M f i PrmIdeal R
50 simplr R IDomn y 0 ˙ i PrmIdeal R 0 ˙ y i f Word P y = M f f Word P
51 simpr R IDomn y 0 ˙ i PrmIdeal R 0 ˙ y i f Word P y = M f y = M f
52 simpllr R IDomn y 0 ˙ i PrmIdeal R 0 ˙ y i f Word P y = M f y i
53 51 52 eqeltrrd R IDomn y 0 ˙ i PrmIdeal R 0 ˙ y i f Word P y = M f M f i
54 42 ad2antrr R IDomn y 0 ˙ i PrmIdeal R 0 ˙ y i f Word P y = M f y 0 ˙
55 51 54 eqnetrrd R IDomn y 0 ˙ i PrmIdeal R 0 ˙ y i f Word P y = M f M f 0 ˙
56 1 2 3 4 5 48 49 50 53 55 dfufd2lem R IDomn y 0 ˙ i PrmIdeal R 0 ˙ y i f Word P y = M f i P
57 56 rexlimdva2 R IDomn y 0 ˙ i PrmIdeal R 0 ˙ y i f Word P y = M f i P
58 47 57 syld R IDomn y 0 ˙ i PrmIdeal R 0 ˙ y i x B U 0 ˙ f Word P x = M f i P
59 58 imp R IDomn y 0 ˙ i PrmIdeal R 0 ˙ y i x B U 0 ˙ f Word P x = M f i P
60 59 an52ds R IDomn x B U 0 ˙ f Word P x = M f i PrmIdeal R 0 ˙ y i y 0 ˙ i P
61 20 ad2antrr R IDomn x B U 0 ˙ f Word P x = M f i PrmIdeal R 0 ˙ R Ring
62 simpr R IDomn x B U 0 ˙ f Word P x = M f i PrmIdeal R 0 ˙ i PrmIdeal R 0 ˙
63 62 eldifad R IDomn x B U 0 ˙ f Word P x = M f i PrmIdeal R 0 ˙ i PrmIdeal R
64 61 63 24 syl2anc R IDomn x B U 0 ˙ f Word P x = M f i PrmIdeal R 0 ˙ i LIdeal R
65 eldifsni i PrmIdeal R 0 ˙ i 0 ˙
66 65 adantl R IDomn x B U 0 ˙ f Word P x = M f i PrmIdeal R 0 ˙ i 0 ˙
67 26 2 lidlnz R Ring i LIdeal R i 0 ˙ y i y 0 ˙
68 61 64 66 67 syl3anc R IDomn x B U 0 ˙ f Word P x = M f i PrmIdeal R 0 ˙ y i y 0 ˙
69 60 68 r19.29a R IDomn x B U 0 ˙ f Word P x = M f i PrmIdeal R 0 ˙ i P
70 69 ralrimiva R IDomn x B U 0 ˙ f Word P x = M f i PrmIdeal R 0 ˙ i P
71 eqid PrmIdeal R = PrmIdeal R
72 71 4 2 isufd R UFD R IDomn i PrmIdeal R 0 ˙ i P
73 18 70 72 sylanbrc R IDomn x B U 0 ˙ f Word P x = M f R UFD
74 17 73 impbii R UFD R IDomn x B U 0 ˙ f Word P x = M f