Metamath Proof Explorer


Theorem wrdfsupp

Description: A word has finite support. (Contributed by Thierry Arnoux, 27-May-2025)

Ref Expression
Hypotheses wrdfsupp.1
|- ( ph -> Z e. V )
wrdfsupp.2
|- ( ph -> W e. Word S )
Assertion wrdfsupp
|- ( ph -> W finSupp Z )

Proof

Step Hyp Ref Expression
1 wrdfsupp.1
 |-  ( ph -> Z e. V )
2 wrdfsupp.2
 |-  ( ph -> W e. Word S )
3 eqidd
 |-  ( ph -> ( # ` W ) = ( # ` W ) )
4 3 2 wrdfd
 |-  ( ph -> W : ( 0 ..^ ( # ` W ) ) --> S )
5 fzofi
 |-  ( 0 ..^ ( # ` W ) ) e. Fin
6 5 a1i
 |-  ( ph -> ( 0 ..^ ( # ` W ) ) e. Fin )
7 4 6 1 fdmfifsupp
 |-  ( ph -> W finSupp Z )