Step |
Hyp |
Ref |
Expression |
1 |
|
wrdpmcl.1 |
|- J = ( 0 ..^ ( # ` W ) ) |
2 |
|
wrdpmcl.2 |
|- ( ph -> E : J -1-1-onto-> J ) |
3 |
|
wrdpmcl.3 |
|- ( ph -> W e. Word S ) |
4 |
|
eqidd |
|- ( ph -> ( # ` W ) = ( # ` W ) ) |
5 |
4 3
|
wrdfd |
|- ( ph -> W : ( 0 ..^ ( # ` W ) ) --> S ) |
6 |
|
f1oeq23 |
|- ( ( J = ( 0 ..^ ( # ` W ) ) /\ J = ( 0 ..^ ( # ` W ) ) ) -> ( E : J -1-1-onto-> J <-> E : ( 0 ..^ ( # ` W ) ) -1-1-onto-> ( 0 ..^ ( # ` W ) ) ) ) |
7 |
1 1 6
|
mp2an |
|- ( E : J -1-1-onto-> J <-> E : ( 0 ..^ ( # ` W ) ) -1-1-onto-> ( 0 ..^ ( # ` W ) ) ) |
8 |
2 7
|
sylib |
|- ( ph -> E : ( 0 ..^ ( # ` W ) ) -1-1-onto-> ( 0 ..^ ( # ` W ) ) ) |
9 |
|
f1of |
|- ( E : ( 0 ..^ ( # ` W ) ) -1-1-onto-> ( 0 ..^ ( # ` W ) ) -> E : ( 0 ..^ ( # ` W ) ) --> ( 0 ..^ ( # ` W ) ) ) |
10 |
8 9
|
syl |
|- ( ph -> E : ( 0 ..^ ( # ` W ) ) --> ( 0 ..^ ( # ` W ) ) ) |
11 |
5 10
|
fcod |
|- ( ph -> ( W o. E ) : ( 0 ..^ ( # ` W ) ) --> S ) |
12 |
|
iswrdi |
|- ( ( W o. E ) : ( 0 ..^ ( # ` W ) ) --> S -> ( W o. E ) e. Word S ) |
13 |
11 12
|
syl |
|- ( ph -> ( W o. E ) e. Word S ) |