Step |
Hyp |
Ref |
Expression |
1 |
|
wrdpmcl.1 |
⊢ 𝐽 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) |
2 |
|
wrdpmcl.2 |
⊢ ( 𝜑 → 𝐸 : 𝐽 –1-1-onto→ 𝐽 ) |
3 |
|
wrdpmcl.3 |
⊢ ( 𝜑 → 𝑊 ∈ Word 𝑆 ) |
4 |
|
eqidd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) ) |
5 |
4 3
|
wrdfd |
⊢ ( 𝜑 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 ) |
6 |
|
f1oeq23 |
⊢ ( ( 𝐽 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ 𝐽 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐸 : 𝐽 –1-1-onto→ 𝐽 ↔ 𝐸 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
7 |
1 1 6
|
mp2an |
⊢ ( 𝐸 : 𝐽 –1-1-onto→ 𝐽 ↔ 𝐸 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
8 |
2 7
|
sylib |
⊢ ( 𝜑 → 𝐸 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
9 |
|
f1of |
⊢ ( 𝐸 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝐸 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → 𝐸 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
11 |
5 10
|
fcod |
⊢ ( 𝜑 → ( 𝑊 ∘ 𝐸 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 ) |
12 |
|
iswrdi |
⊢ ( ( 𝑊 ∘ 𝐸 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 → ( 𝑊 ∘ 𝐸 ) ∈ Word 𝑆 ) |
13 |
11 12
|
syl |
⊢ ( 𝜑 → ( 𝑊 ∘ 𝐸 ) ∈ Word 𝑆 ) |