Metamath Proof Explorer


Theorem wrdpmcl

Description: Closure of a word with permuted symbols. (Contributed by Thierry Arnoux, 27-May-2025)

Ref Expression
Hypotheses wrdpmcl.1 𝐽 = ( 0 ..^ ( ♯ ‘ 𝑊 ) )
wrdpmcl.2 ( 𝜑𝐸 : 𝐽1-1-onto𝐽 )
wrdpmcl.3 ( 𝜑𝑊 ∈ Word 𝑆 )
Assertion wrdpmcl ( 𝜑 → ( 𝑊𝐸 ) ∈ Word 𝑆 )

Proof

Step Hyp Ref Expression
1 wrdpmcl.1 𝐽 = ( 0 ..^ ( ♯ ‘ 𝑊 ) )
2 wrdpmcl.2 ( 𝜑𝐸 : 𝐽1-1-onto𝐽 )
3 wrdpmcl.3 ( 𝜑𝑊 ∈ Word 𝑆 )
4 eqidd ( 𝜑 → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑊 ) )
5 4 3 wrdfd ( 𝜑𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 )
6 f1oeq23 ( ( 𝐽 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ 𝐽 = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐸 : 𝐽1-1-onto𝐽𝐸 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) )
7 1 1 6 mp2an ( 𝐸 : 𝐽1-1-onto𝐽𝐸 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )
8 2 7 sylib ( 𝜑𝐸 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )
9 f1of ( 𝐸 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝐸 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )
10 8 9 syl ( 𝜑𝐸 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )
11 5 10 fcod ( 𝜑 → ( 𝑊𝐸 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 )
12 iswrdi ( ( 𝑊𝐸 ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝑆 → ( 𝑊𝐸 ) ∈ Word 𝑆 )
13 11 12 syl ( 𝜑 → ( 𝑊𝐸 ) ∈ Word 𝑆 )