Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Words over a set - misc additions
wrdpmcl
Next ⟩
pfx1s2
Metamath Proof Explorer
Ascii
Unicode
Theorem
wrdpmcl
Description:
Closure of a word with permuted symbols.
(Contributed by
Thierry Arnoux
, 27-May-2025)
Ref
Expression
Hypotheses
wrdpmcl.1
⊢
J
=
0
..^
W
wrdpmcl.2
⊢
φ
→
E
:
J
⟶
1-1 onto
J
wrdpmcl.3
⊢
φ
→
W
∈
Word
S
Assertion
wrdpmcl
⊢
φ
→
W
∘
E
∈
Word
S
Proof
Step
Hyp
Ref
Expression
1
wrdpmcl.1
⊢
J
=
0
..^
W
2
wrdpmcl.2
⊢
φ
→
E
:
J
⟶
1-1 onto
J
3
wrdpmcl.3
⊢
φ
→
W
∈
Word
S
4
eqidd
⊢
φ
→
W
=
W
5
4
3
wrdfd
⊢
φ
→
W
:
0
..^
W
⟶
S
6
f1oeq23
⊢
J
=
0
..^
W
∧
J
=
0
..^
W
→
E
:
J
⟶
1-1 onto
J
↔
E
:
0
..^
W
⟶
1-1 onto
0
..^
W
7
1
1
6
mp2an
⊢
E
:
J
⟶
1-1 onto
J
↔
E
:
0
..^
W
⟶
1-1 onto
0
..^
W
8
2
7
sylib
⊢
φ
→
E
:
0
..^
W
⟶
1-1 onto
0
..^
W
9
f1of
⊢
E
:
0
..^
W
⟶
1-1 onto
0
..^
W
→
E
:
0
..^
W
⟶
0
..^
W
10
8
9
syl
⊢
φ
→
E
:
0
..^
W
⟶
0
..^
W
11
5
10
fcod
⊢
φ
→
W
∘
E
:
0
..^
W
⟶
S
12
iswrdi
⊢
W
∘
E
:
0
..^
W
⟶
S
→
W
∘
E
∈
Word
S
13
11
12
syl
⊢
φ
→
W
∘
E
∈
Word
S