Metamath Proof Explorer


Theorem wrdpmcl

Description: Closure of a word with permuted symbols. (Contributed by Thierry Arnoux, 27-May-2025)

Ref Expression
Hypotheses wrdpmcl.1 J = 0 ..^ W
wrdpmcl.2 φ E : J 1-1 onto J
wrdpmcl.3 φ W Word S
Assertion wrdpmcl φ W E Word S

Proof

Step Hyp Ref Expression
1 wrdpmcl.1 J = 0 ..^ W
2 wrdpmcl.2 φ E : J 1-1 onto J
3 wrdpmcl.3 φ W Word S
4 eqidd φ W = W
5 4 3 wrdfd φ W : 0 ..^ W S
6 f1oeq23 J = 0 ..^ W J = 0 ..^ W E : J 1-1 onto J E : 0 ..^ W 1-1 onto 0 ..^ W
7 1 1 6 mp2an E : J 1-1 onto J E : 0 ..^ W 1-1 onto 0 ..^ W
8 2 7 sylib φ E : 0 ..^ W 1-1 onto 0 ..^ W
9 f1of E : 0 ..^ W 1-1 onto 0 ..^ W E : 0 ..^ W 0 ..^ W
10 8 9 syl φ E : 0 ..^ W 0 ..^ W
11 5 10 fcod φ W E : 0 ..^ W S
12 iswrdi W E : 0 ..^ W S W E Word S
13 11 12 syl φ W E Word S