Metamath Proof Explorer


Theorem pfx1s2

Description: The prefix of length 1 of a length 2 word. (Contributed by Thierry Arnoux, 19-Sep-2023)

Ref Expression
Assertion pfx1s2 AVBV⟨“AB”⟩prefix1=⟨“A”⟩

Proof

Step Hyp Ref Expression
1 s2cl AVBV⟨“AB”⟩WordV
2 2re 2
3 2 leidi 22
4 s2len ⟨“AB”⟩=2
5 3 4 breqtrri 2⟨“AB”⟩
6 wrdlenge2n0 ⟨“AB”⟩WordV2⟨“AB”⟩⟨“AB”⟩
7 5 6 mpan2 ⟨“AB”⟩WordV⟨“AB”⟩
8 pfx1 ⟨“AB”⟩WordV⟨“AB”⟩⟨“AB”⟩prefix1=⟨“⟨“AB”⟩0”⟩
9 1 7 8 syl2anc2 AVBV⟨“AB”⟩prefix1=⟨“⟨“AB”⟩0”⟩
10 s2fv0 AV⟨“AB”⟩0=A
11 10 adantr AVBV⟨“AB”⟩0=A
12 11 s1eqd AVBV⟨“⟨“AB”⟩0”⟩=⟨“A”⟩
13 9 12 eqtrd AVBV⟨“AB”⟩prefix1=⟨“A”⟩