Metamath Proof Explorer


Theorem wrdlenge2n0

Description: A word with length at least 2 is not empty. (Contributed by AV, 18-Jun-2018) (Proof shortened by AV, 14-Oct-2018)

Ref Expression
Assertion wrdlenge2n0 WWordV2WW

Proof

Step Hyp Ref Expression
1 1red WWordV1
2 2re 2
3 2 a1i WWordV2
4 lencl WWordVW0
5 4 nn0red WWordVW
6 1 3 5 3jca WWordV12W
7 6 adantr WWordV2W12W
8 simpr WWordV2W2W
9 1lt2 1<2
10 8 9 jctil WWordV2W1<22W
11 ltleletr 12W1<22W1W
12 7 10 11 sylc WWordV2W1W
13 wrdlenge1n0 WWordVW1W
14 13 adantr WWordV2WW1W
15 12 14 mpbird WWordV2WW