Metamath Proof Explorer


Theorem pfx1

Description: The prefix of length one of a nonempty word expressed as a singleton word. (Contributed by AV, 15-May-2020)

Ref Expression
Assertion pfx1 WWordVWWprefix1=⟨“W0”⟩

Proof

Step Hyp Ref Expression
1 1nn0 10
2 1 a1i W10
3 pfxval WWordV10Wprefix1=Wsubstr01
4 2 3 sylan2 WWordVWWprefix1=Wsubstr01
5 1e0p1 1=0+1
6 5 opeq2i 01=00+1
7 6 oveq2i Wsubstr01=Wsubstr00+1
8 7 a1i WWordVWWsubstr01=Wsubstr00+1
9 lennncl WWordVWW
10 lbfzo0 00..^WW
11 9 10 sylibr WWordVW00..^W
12 swrds1 WWordV00..^WWsubstr00+1=⟨“W0”⟩
13 11 12 syldan WWordVWWsubstr00+1=⟨“W0”⟩
14 4 8 13 3eqtrd WWordVWWprefix1=⟨“W0”⟩