| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1arithufd.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | 1arithufd.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 3 |  | 1arithufd.u |  |-  U = ( Unit ` R ) | 
						
							| 4 |  | 1arithufd.p |  |-  P = ( RPrime ` R ) | 
						
							| 5 |  | 1arithufd.m |  |-  M = ( mulGrp ` R ) | 
						
							| 6 |  | 1arithufd.r |  |-  ( ph -> R e. UFD ) | 
						
							| 7 |  | 1arithufdlem.2 |  |-  ( ph -> -. R e. DivRing ) | 
						
							| 8 |  | 1arithufdlem.s |  |-  S = { x e. B | E. f e. Word P x = ( M gsum f ) } | 
						
							| 9 |  | 1arithufdlem2.1 |  |-  .x. = ( .r ` R ) | 
						
							| 10 |  | 1arithufdlem2.2 |  |-  ( ph -> X e. S ) | 
						
							| 11 |  | 1arithufdlem2.3 |  |-  ( ph -> Y e. S ) | 
						
							| 12 |  | eqeq1 |  |-  ( x = ( X .x. Y ) -> ( x = ( M gsum f ) <-> ( X .x. Y ) = ( M gsum f ) ) ) | 
						
							| 13 | 12 | rexbidv |  |-  ( x = ( X .x. Y ) -> ( E. f e. Word P x = ( M gsum f ) <-> E. f e. Word P ( X .x. Y ) = ( M gsum f ) ) ) | 
						
							| 14 | 6 | ufdidom |  |-  ( ph -> R e. IDomn ) | 
						
							| 15 | 14 | idomringd |  |-  ( ph -> R e. Ring ) | 
						
							| 16 | 8 | ssrab3 |  |-  S C_ B | 
						
							| 17 | 16 10 | sselid |  |-  ( ph -> X e. B ) | 
						
							| 18 | 16 11 | sselid |  |-  ( ph -> Y e. B ) | 
						
							| 19 | 1 9 15 17 18 | ringcld |  |-  ( ph -> ( X .x. Y ) e. B ) | 
						
							| 20 |  | oveq2 |  |-  ( f = ( g ++ h ) -> ( M gsum f ) = ( M gsum ( g ++ h ) ) ) | 
						
							| 21 | 20 | eqeq2d |  |-  ( f = ( g ++ h ) -> ( ( X .x. Y ) = ( M gsum f ) <-> ( X .x. Y ) = ( M gsum ( g ++ h ) ) ) ) | 
						
							| 22 |  | ccatcl |  |-  ( ( g e. Word P /\ h e. Word P ) -> ( g ++ h ) e. Word P ) | 
						
							| 23 | 22 | ad5ant24 |  |-  ( ( ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) /\ h e. Word P ) /\ Y = ( M gsum h ) ) -> ( g ++ h ) e. Word P ) | 
						
							| 24 |  | simpllr |  |-  ( ( ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) /\ h e. Word P ) /\ Y = ( M gsum h ) ) -> X = ( M gsum g ) ) | 
						
							| 25 |  | simpr |  |-  ( ( ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) /\ h e. Word P ) /\ Y = ( M gsum h ) ) -> Y = ( M gsum h ) ) | 
						
							| 26 | 24 25 | oveq12d |  |-  ( ( ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) /\ h e. Word P ) /\ Y = ( M gsum h ) ) -> ( X .x. Y ) = ( ( M gsum g ) .x. ( M gsum h ) ) ) | 
						
							| 27 | 5 | ringmgp |  |-  ( R e. Ring -> M e. Mnd ) | 
						
							| 28 | 15 27 | syl |  |-  ( ph -> M e. Mnd ) | 
						
							| 29 | 28 | ad4antr |  |-  ( ( ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) /\ h e. Word P ) /\ Y = ( M gsum h ) ) -> M e. Mnd ) | 
						
							| 30 | 6 | adantr |  |-  ( ( ph /\ x e. P ) -> R e. UFD ) | 
						
							| 31 |  | simpr |  |-  ( ( ph /\ x e. P ) -> x e. P ) | 
						
							| 32 | 1 4 30 31 | rprmcl |  |-  ( ( ph /\ x e. P ) -> x e. B ) | 
						
							| 33 | 32 | ex |  |-  ( ph -> ( x e. P -> x e. B ) ) | 
						
							| 34 | 33 | ssrdv |  |-  ( ph -> P C_ B ) | 
						
							| 35 |  | sswrd |  |-  ( P C_ B -> Word P C_ Word B ) | 
						
							| 36 | 34 35 | syl |  |-  ( ph -> Word P C_ Word B ) | 
						
							| 37 | 36 | ad4antr |  |-  ( ( ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) /\ h e. Word P ) /\ Y = ( M gsum h ) ) -> Word P C_ Word B ) | 
						
							| 38 |  | simp-4r |  |-  ( ( ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) /\ h e. Word P ) /\ Y = ( M gsum h ) ) -> g e. Word P ) | 
						
							| 39 | 37 38 | sseldd |  |-  ( ( ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) /\ h e. Word P ) /\ Y = ( M gsum h ) ) -> g e. Word B ) | 
						
							| 40 |  | simplr |  |-  ( ( ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) /\ h e. Word P ) /\ Y = ( M gsum h ) ) -> h e. Word P ) | 
						
							| 41 | 37 40 | sseldd |  |-  ( ( ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) /\ h e. Word P ) /\ Y = ( M gsum h ) ) -> h e. Word B ) | 
						
							| 42 | 5 1 | mgpbas |  |-  B = ( Base ` M ) | 
						
							| 43 | 5 9 | mgpplusg |  |-  .x. = ( +g ` M ) | 
						
							| 44 | 42 43 | gsumccat |  |-  ( ( M e. Mnd /\ g e. Word B /\ h e. Word B ) -> ( M gsum ( g ++ h ) ) = ( ( M gsum g ) .x. ( M gsum h ) ) ) | 
						
							| 45 | 29 39 41 44 | syl3anc |  |-  ( ( ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) /\ h e. Word P ) /\ Y = ( M gsum h ) ) -> ( M gsum ( g ++ h ) ) = ( ( M gsum g ) .x. ( M gsum h ) ) ) | 
						
							| 46 | 26 45 | eqtr4d |  |-  ( ( ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) /\ h e. Word P ) /\ Y = ( M gsum h ) ) -> ( X .x. Y ) = ( M gsum ( g ++ h ) ) ) | 
						
							| 47 | 21 23 46 | rspcedvdw |  |-  ( ( ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) /\ h e. Word P ) /\ Y = ( M gsum h ) ) -> E. f e. Word P ( X .x. Y ) = ( M gsum f ) ) | 
						
							| 48 | 11 8 | eleqtrdi |  |-  ( ph -> Y e. { x e. B | E. f e. Word P x = ( M gsum f ) } ) | 
						
							| 49 |  | oveq2 |  |-  ( f = h -> ( M gsum f ) = ( M gsum h ) ) | 
						
							| 50 | 49 | eqeq2d |  |-  ( f = h -> ( x = ( M gsum f ) <-> x = ( M gsum h ) ) ) | 
						
							| 51 | 50 | cbvrexvw |  |-  ( E. f e. Word P x = ( M gsum f ) <-> E. h e. Word P x = ( M gsum h ) ) | 
						
							| 52 |  | eqeq1 |  |-  ( x = Y -> ( x = ( M gsum h ) <-> Y = ( M gsum h ) ) ) | 
						
							| 53 | 52 | rexbidv |  |-  ( x = Y -> ( E. h e. Word P x = ( M gsum h ) <-> E. h e. Word P Y = ( M gsum h ) ) ) | 
						
							| 54 | 51 53 | bitrid |  |-  ( x = Y -> ( E. f e. Word P x = ( M gsum f ) <-> E. h e. Word P Y = ( M gsum h ) ) ) | 
						
							| 55 | 54 | elrab3 |  |-  ( Y e. B -> ( Y e. { x e. B | E. f e. Word P x = ( M gsum f ) } <-> E. h e. Word P Y = ( M gsum h ) ) ) | 
						
							| 56 | 55 | biimpa |  |-  ( ( Y e. B /\ Y e. { x e. B | E. f e. Word P x = ( M gsum f ) } ) -> E. h e. Word P Y = ( M gsum h ) ) | 
						
							| 57 | 18 48 56 | syl2anc |  |-  ( ph -> E. h e. Word P Y = ( M gsum h ) ) | 
						
							| 58 | 57 | ad2antrr |  |-  ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) -> E. h e. Word P Y = ( M gsum h ) ) | 
						
							| 59 | 47 58 | r19.29a |  |-  ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) -> E. f e. Word P ( X .x. Y ) = ( M gsum f ) ) | 
						
							| 60 | 10 8 | eleqtrdi |  |-  ( ph -> X e. { x e. B | E. f e. Word P x = ( M gsum f ) } ) | 
						
							| 61 |  | oveq2 |  |-  ( f = g -> ( M gsum f ) = ( M gsum g ) ) | 
						
							| 62 | 61 | eqeq2d |  |-  ( f = g -> ( x = ( M gsum f ) <-> x = ( M gsum g ) ) ) | 
						
							| 63 | 62 | cbvrexvw |  |-  ( E. f e. Word P x = ( M gsum f ) <-> E. g e. Word P x = ( M gsum g ) ) | 
						
							| 64 |  | eqeq1 |  |-  ( x = X -> ( x = ( M gsum g ) <-> X = ( M gsum g ) ) ) | 
						
							| 65 | 64 | rexbidv |  |-  ( x = X -> ( E. g e. Word P x = ( M gsum g ) <-> E. g e. Word P X = ( M gsum g ) ) ) | 
						
							| 66 | 63 65 | bitrid |  |-  ( x = X -> ( E. f e. Word P x = ( M gsum f ) <-> E. g e. Word P X = ( M gsum g ) ) ) | 
						
							| 67 | 66 | elrab3 |  |-  ( X e. B -> ( X e. { x e. B | E. f e. Word P x = ( M gsum f ) } <-> E. g e. Word P X = ( M gsum g ) ) ) | 
						
							| 68 | 67 | biimpa |  |-  ( ( X e. B /\ X e. { x e. B | E. f e. Word P x = ( M gsum f ) } ) -> E. g e. Word P X = ( M gsum g ) ) | 
						
							| 69 | 17 60 68 | syl2anc |  |-  ( ph -> E. g e. Word P X = ( M gsum g ) ) | 
						
							| 70 | 59 69 | r19.29a |  |-  ( ph -> E. f e. Word P ( X .x. Y ) = ( M gsum f ) ) | 
						
							| 71 | 13 19 70 | elrabd |  |-  ( ph -> ( X .x. Y ) e. { x e. B | E. f e. Word P x = ( M gsum f ) } ) | 
						
							| 72 | 71 8 | eleqtrrdi |  |-  ( ph -> ( X .x. Y ) e. S ) |