| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1arithufd.b |
|- B = ( Base ` R ) |
| 2 |
|
1arithufd.0 |
|- .0. = ( 0g ` R ) |
| 3 |
|
1arithufd.u |
|- U = ( Unit ` R ) |
| 4 |
|
1arithufd.p |
|- P = ( RPrime ` R ) |
| 5 |
|
1arithufd.m |
|- M = ( mulGrp ` R ) |
| 6 |
|
1arithufd.r |
|- ( ph -> R e. UFD ) |
| 7 |
|
1arithufdlem.2 |
|- ( ph -> -. R e. DivRing ) |
| 8 |
|
1arithufdlem.s |
|- S = { x e. B | E. f e. Word P x = ( M gsum f ) } |
| 9 |
|
1arithufdlem2.1 |
|- .x. = ( .r ` R ) |
| 10 |
|
1arithufdlem2.2 |
|- ( ph -> X e. S ) |
| 11 |
|
1arithufdlem2.3 |
|- ( ph -> Y e. S ) |
| 12 |
|
eqeq1 |
|- ( x = ( X .x. Y ) -> ( x = ( M gsum f ) <-> ( X .x. Y ) = ( M gsum f ) ) ) |
| 13 |
12
|
rexbidv |
|- ( x = ( X .x. Y ) -> ( E. f e. Word P x = ( M gsum f ) <-> E. f e. Word P ( X .x. Y ) = ( M gsum f ) ) ) |
| 14 |
6
|
ufdidom |
|- ( ph -> R e. IDomn ) |
| 15 |
14
|
idomringd |
|- ( ph -> R e. Ring ) |
| 16 |
8
|
ssrab3 |
|- S C_ B |
| 17 |
16 10
|
sselid |
|- ( ph -> X e. B ) |
| 18 |
16 11
|
sselid |
|- ( ph -> Y e. B ) |
| 19 |
1 9 15 17 18
|
ringcld |
|- ( ph -> ( X .x. Y ) e. B ) |
| 20 |
|
oveq2 |
|- ( f = ( g ++ h ) -> ( M gsum f ) = ( M gsum ( g ++ h ) ) ) |
| 21 |
20
|
eqeq2d |
|- ( f = ( g ++ h ) -> ( ( X .x. Y ) = ( M gsum f ) <-> ( X .x. Y ) = ( M gsum ( g ++ h ) ) ) ) |
| 22 |
|
ccatcl |
|- ( ( g e. Word P /\ h e. Word P ) -> ( g ++ h ) e. Word P ) |
| 23 |
22
|
ad5ant24 |
|- ( ( ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) /\ h e. Word P ) /\ Y = ( M gsum h ) ) -> ( g ++ h ) e. Word P ) |
| 24 |
|
simpllr |
|- ( ( ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) /\ h e. Word P ) /\ Y = ( M gsum h ) ) -> X = ( M gsum g ) ) |
| 25 |
|
simpr |
|- ( ( ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) /\ h e. Word P ) /\ Y = ( M gsum h ) ) -> Y = ( M gsum h ) ) |
| 26 |
24 25
|
oveq12d |
|- ( ( ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) /\ h e. Word P ) /\ Y = ( M gsum h ) ) -> ( X .x. Y ) = ( ( M gsum g ) .x. ( M gsum h ) ) ) |
| 27 |
5
|
ringmgp |
|- ( R e. Ring -> M e. Mnd ) |
| 28 |
15 27
|
syl |
|- ( ph -> M e. Mnd ) |
| 29 |
28
|
ad4antr |
|- ( ( ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) /\ h e. Word P ) /\ Y = ( M gsum h ) ) -> M e. Mnd ) |
| 30 |
6
|
adantr |
|- ( ( ph /\ x e. P ) -> R e. UFD ) |
| 31 |
|
simpr |
|- ( ( ph /\ x e. P ) -> x e. P ) |
| 32 |
1 4 30 31
|
rprmcl |
|- ( ( ph /\ x e. P ) -> x e. B ) |
| 33 |
32
|
ex |
|- ( ph -> ( x e. P -> x e. B ) ) |
| 34 |
33
|
ssrdv |
|- ( ph -> P C_ B ) |
| 35 |
|
sswrd |
|- ( P C_ B -> Word P C_ Word B ) |
| 36 |
34 35
|
syl |
|- ( ph -> Word P C_ Word B ) |
| 37 |
36
|
ad4antr |
|- ( ( ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) /\ h e. Word P ) /\ Y = ( M gsum h ) ) -> Word P C_ Word B ) |
| 38 |
|
simp-4r |
|- ( ( ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) /\ h e. Word P ) /\ Y = ( M gsum h ) ) -> g e. Word P ) |
| 39 |
37 38
|
sseldd |
|- ( ( ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) /\ h e. Word P ) /\ Y = ( M gsum h ) ) -> g e. Word B ) |
| 40 |
|
simplr |
|- ( ( ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) /\ h e. Word P ) /\ Y = ( M gsum h ) ) -> h e. Word P ) |
| 41 |
37 40
|
sseldd |
|- ( ( ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) /\ h e. Word P ) /\ Y = ( M gsum h ) ) -> h e. Word B ) |
| 42 |
5 1
|
mgpbas |
|- B = ( Base ` M ) |
| 43 |
5 9
|
mgpplusg |
|- .x. = ( +g ` M ) |
| 44 |
42 43
|
gsumccat |
|- ( ( M e. Mnd /\ g e. Word B /\ h e. Word B ) -> ( M gsum ( g ++ h ) ) = ( ( M gsum g ) .x. ( M gsum h ) ) ) |
| 45 |
29 39 41 44
|
syl3anc |
|- ( ( ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) /\ h e. Word P ) /\ Y = ( M gsum h ) ) -> ( M gsum ( g ++ h ) ) = ( ( M gsum g ) .x. ( M gsum h ) ) ) |
| 46 |
26 45
|
eqtr4d |
|- ( ( ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) /\ h e. Word P ) /\ Y = ( M gsum h ) ) -> ( X .x. Y ) = ( M gsum ( g ++ h ) ) ) |
| 47 |
21 23 46
|
rspcedvdw |
|- ( ( ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) /\ h e. Word P ) /\ Y = ( M gsum h ) ) -> E. f e. Word P ( X .x. Y ) = ( M gsum f ) ) |
| 48 |
11 8
|
eleqtrdi |
|- ( ph -> Y e. { x e. B | E. f e. Word P x = ( M gsum f ) } ) |
| 49 |
|
oveq2 |
|- ( f = h -> ( M gsum f ) = ( M gsum h ) ) |
| 50 |
49
|
eqeq2d |
|- ( f = h -> ( x = ( M gsum f ) <-> x = ( M gsum h ) ) ) |
| 51 |
50
|
cbvrexvw |
|- ( E. f e. Word P x = ( M gsum f ) <-> E. h e. Word P x = ( M gsum h ) ) |
| 52 |
|
eqeq1 |
|- ( x = Y -> ( x = ( M gsum h ) <-> Y = ( M gsum h ) ) ) |
| 53 |
52
|
rexbidv |
|- ( x = Y -> ( E. h e. Word P x = ( M gsum h ) <-> E. h e. Word P Y = ( M gsum h ) ) ) |
| 54 |
51 53
|
bitrid |
|- ( x = Y -> ( E. f e. Word P x = ( M gsum f ) <-> E. h e. Word P Y = ( M gsum h ) ) ) |
| 55 |
54
|
elrab3 |
|- ( Y e. B -> ( Y e. { x e. B | E. f e. Word P x = ( M gsum f ) } <-> E. h e. Word P Y = ( M gsum h ) ) ) |
| 56 |
55
|
biimpa |
|- ( ( Y e. B /\ Y e. { x e. B | E. f e. Word P x = ( M gsum f ) } ) -> E. h e. Word P Y = ( M gsum h ) ) |
| 57 |
18 48 56
|
syl2anc |
|- ( ph -> E. h e. Word P Y = ( M gsum h ) ) |
| 58 |
57
|
ad2antrr |
|- ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) -> E. h e. Word P Y = ( M gsum h ) ) |
| 59 |
47 58
|
r19.29a |
|- ( ( ( ph /\ g e. Word P ) /\ X = ( M gsum g ) ) -> E. f e. Word P ( X .x. Y ) = ( M gsum f ) ) |
| 60 |
10 8
|
eleqtrdi |
|- ( ph -> X e. { x e. B | E. f e. Word P x = ( M gsum f ) } ) |
| 61 |
|
oveq2 |
|- ( f = g -> ( M gsum f ) = ( M gsum g ) ) |
| 62 |
61
|
eqeq2d |
|- ( f = g -> ( x = ( M gsum f ) <-> x = ( M gsum g ) ) ) |
| 63 |
62
|
cbvrexvw |
|- ( E. f e. Word P x = ( M gsum f ) <-> E. g e. Word P x = ( M gsum g ) ) |
| 64 |
|
eqeq1 |
|- ( x = X -> ( x = ( M gsum g ) <-> X = ( M gsum g ) ) ) |
| 65 |
64
|
rexbidv |
|- ( x = X -> ( E. g e. Word P x = ( M gsum g ) <-> E. g e. Word P X = ( M gsum g ) ) ) |
| 66 |
63 65
|
bitrid |
|- ( x = X -> ( E. f e. Word P x = ( M gsum f ) <-> E. g e. Word P X = ( M gsum g ) ) ) |
| 67 |
66
|
elrab3 |
|- ( X e. B -> ( X e. { x e. B | E. f e. Word P x = ( M gsum f ) } <-> E. g e. Word P X = ( M gsum g ) ) ) |
| 68 |
67
|
biimpa |
|- ( ( X e. B /\ X e. { x e. B | E. f e. Word P x = ( M gsum f ) } ) -> E. g e. Word P X = ( M gsum g ) ) |
| 69 |
17 60 68
|
syl2anc |
|- ( ph -> E. g e. Word P X = ( M gsum g ) ) |
| 70 |
59 69
|
r19.29a |
|- ( ph -> E. f e. Word P ( X .x. Y ) = ( M gsum f ) ) |
| 71 |
13 19 70
|
elrabd |
|- ( ph -> ( X .x. Y ) e. { x e. B | E. f e. Word P x = ( M gsum f ) } ) |
| 72 |
71 8
|
eleqtrrdi |
|- ( ph -> ( X .x. Y ) e. S ) |