Metamath Proof Explorer


Theorem 1arithufdlem2

Description: Lemma for 1arithufd . The set S of elements which can be written as a product of primes is multiplicatively closed. (Contributed by Thierry Arnoux, 3-Jun-2025)

Ref Expression
Hypotheses 1arithufd.b 𝐵 = ( Base ‘ 𝑅 )
1arithufd.0 0 = ( 0g𝑅 )
1arithufd.u 𝑈 = ( Unit ‘ 𝑅 )
1arithufd.p 𝑃 = ( RPrime ‘ 𝑅 )
1arithufd.m 𝑀 = ( mulGrp ‘ 𝑅 )
1arithufd.r ( 𝜑𝑅 ∈ UFD )
1arithufdlem.2 ( 𝜑 → ¬ 𝑅 ∈ DivRing )
1arithufdlem.s 𝑆 = { 𝑥𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) }
1arithufdlem2.1 · = ( .r𝑅 )
1arithufdlem2.2 ( 𝜑𝑋𝑆 )
1arithufdlem2.3 ( 𝜑𝑌𝑆 )
Assertion 1arithufdlem2 ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 1arithufd.b 𝐵 = ( Base ‘ 𝑅 )
2 1arithufd.0 0 = ( 0g𝑅 )
3 1arithufd.u 𝑈 = ( Unit ‘ 𝑅 )
4 1arithufd.p 𝑃 = ( RPrime ‘ 𝑅 )
5 1arithufd.m 𝑀 = ( mulGrp ‘ 𝑅 )
6 1arithufd.r ( 𝜑𝑅 ∈ UFD )
7 1arithufdlem.2 ( 𝜑 → ¬ 𝑅 ∈ DivRing )
8 1arithufdlem.s 𝑆 = { 𝑥𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) }
9 1arithufdlem2.1 · = ( .r𝑅 )
10 1arithufdlem2.2 ( 𝜑𝑋𝑆 )
11 1arithufdlem2.3 ( 𝜑𝑌𝑆 )
12 eqeq1 ( 𝑥 = ( 𝑋 · 𝑌 ) → ( 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ ( 𝑋 · 𝑌 ) = ( 𝑀 Σg 𝑓 ) ) )
13 12 rexbidv ( 𝑥 = ( 𝑋 · 𝑌 ) → ( ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ ∃ 𝑓 ∈ Word 𝑃 ( 𝑋 · 𝑌 ) = ( 𝑀 Σg 𝑓 ) ) )
14 6 ufdidom ( 𝜑𝑅 ∈ IDomn )
15 14 idomringd ( 𝜑𝑅 ∈ Ring )
16 8 ssrab3 𝑆𝐵
17 16 10 sselid ( 𝜑𝑋𝐵 )
18 16 11 sselid ( 𝜑𝑌𝐵 )
19 1 9 15 17 18 ringcld ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐵 )
20 oveq2 ( 𝑓 = ( 𝑔 ++ ) → ( 𝑀 Σg 𝑓 ) = ( 𝑀 Σg ( 𝑔 ++ ) ) )
21 20 eqeq2d ( 𝑓 = ( 𝑔 ++ ) → ( ( 𝑋 · 𝑌 ) = ( 𝑀 Σg 𝑓 ) ↔ ( 𝑋 · 𝑌 ) = ( 𝑀 Σg ( 𝑔 ++ ) ) ) )
22 ccatcl ( ( 𝑔 ∈ Word 𝑃 ∈ Word 𝑃 ) → ( 𝑔 ++ ) ∈ Word 𝑃 )
23 22 ad5ant24 ( ( ( ( ( 𝜑𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ∧ ∈ Word 𝑃 ) ∧ 𝑌 = ( 𝑀 Σg ) ) → ( 𝑔 ++ ) ∈ Word 𝑃 )
24 simpllr ( ( ( ( ( 𝜑𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ∧ ∈ Word 𝑃 ) ∧ 𝑌 = ( 𝑀 Σg ) ) → 𝑋 = ( 𝑀 Σg 𝑔 ) )
25 simpr ( ( ( ( ( 𝜑𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ∧ ∈ Word 𝑃 ) ∧ 𝑌 = ( 𝑀 Σg ) ) → 𝑌 = ( 𝑀 Σg ) )
26 24 25 oveq12d ( ( ( ( ( 𝜑𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ∧ ∈ Word 𝑃 ) ∧ 𝑌 = ( 𝑀 Σg ) ) → ( 𝑋 · 𝑌 ) = ( ( 𝑀 Σg 𝑔 ) · ( 𝑀 Σg ) ) )
27 5 ringmgp ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd )
28 15 27 syl ( 𝜑𝑀 ∈ Mnd )
29 28 ad4antr ( ( ( ( ( 𝜑𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ∧ ∈ Word 𝑃 ) ∧ 𝑌 = ( 𝑀 Σg ) ) → 𝑀 ∈ Mnd )
30 6 adantr ( ( 𝜑𝑥𝑃 ) → 𝑅 ∈ UFD )
31 simpr ( ( 𝜑𝑥𝑃 ) → 𝑥𝑃 )
32 1 4 30 31 rprmcl ( ( 𝜑𝑥𝑃 ) → 𝑥𝐵 )
33 32 ex ( 𝜑 → ( 𝑥𝑃𝑥𝐵 ) )
34 33 ssrdv ( 𝜑𝑃𝐵 )
35 sswrd ( 𝑃𝐵 → Word 𝑃 ⊆ Word 𝐵 )
36 34 35 syl ( 𝜑 → Word 𝑃 ⊆ Word 𝐵 )
37 36 ad4antr ( ( ( ( ( 𝜑𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ∧ ∈ Word 𝑃 ) ∧ 𝑌 = ( 𝑀 Σg ) ) → Word 𝑃 ⊆ Word 𝐵 )
38 simp-4r ( ( ( ( ( 𝜑𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ∧ ∈ Word 𝑃 ) ∧ 𝑌 = ( 𝑀 Σg ) ) → 𝑔 ∈ Word 𝑃 )
39 37 38 sseldd ( ( ( ( ( 𝜑𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ∧ ∈ Word 𝑃 ) ∧ 𝑌 = ( 𝑀 Σg ) ) → 𝑔 ∈ Word 𝐵 )
40 simplr ( ( ( ( ( 𝜑𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ∧ ∈ Word 𝑃 ) ∧ 𝑌 = ( 𝑀 Σg ) ) → ∈ Word 𝑃 )
41 37 40 sseldd ( ( ( ( ( 𝜑𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ∧ ∈ Word 𝑃 ) ∧ 𝑌 = ( 𝑀 Σg ) ) → ∈ Word 𝐵 )
42 5 1 mgpbas 𝐵 = ( Base ‘ 𝑀 )
43 5 9 mgpplusg · = ( +g𝑀 )
44 42 43 gsumccat ( ( 𝑀 ∈ Mnd ∧ 𝑔 ∈ Word 𝐵 ∈ Word 𝐵 ) → ( 𝑀 Σg ( 𝑔 ++ ) ) = ( ( 𝑀 Σg 𝑔 ) · ( 𝑀 Σg ) ) )
45 29 39 41 44 syl3anc ( ( ( ( ( 𝜑𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ∧ ∈ Word 𝑃 ) ∧ 𝑌 = ( 𝑀 Σg ) ) → ( 𝑀 Σg ( 𝑔 ++ ) ) = ( ( 𝑀 Σg 𝑔 ) · ( 𝑀 Σg ) ) )
46 26 45 eqtr4d ( ( ( ( ( 𝜑𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ∧ ∈ Word 𝑃 ) ∧ 𝑌 = ( 𝑀 Σg ) ) → ( 𝑋 · 𝑌 ) = ( 𝑀 Σg ( 𝑔 ++ ) ) )
47 21 23 46 rspcedvdw ( ( ( ( ( 𝜑𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ∧ ∈ Word 𝑃 ) ∧ 𝑌 = ( 𝑀 Σg ) ) → ∃ 𝑓 ∈ Word 𝑃 ( 𝑋 · 𝑌 ) = ( 𝑀 Σg 𝑓 ) )
48 11 8 eleqtrdi ( 𝜑𝑌 ∈ { 𝑥𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) } )
49 oveq2 ( 𝑓 = → ( 𝑀 Σg 𝑓 ) = ( 𝑀 Σg ) )
50 49 eqeq2d ( 𝑓 = → ( 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ 𝑥 = ( 𝑀 Σg ) ) )
51 50 cbvrexvw ( ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ ∃ ∈ Word 𝑃 𝑥 = ( 𝑀 Σg ) )
52 eqeq1 ( 𝑥 = 𝑌 → ( 𝑥 = ( 𝑀 Σg ) ↔ 𝑌 = ( 𝑀 Σg ) ) )
53 52 rexbidv ( 𝑥 = 𝑌 → ( ∃ ∈ Word 𝑃 𝑥 = ( 𝑀 Σg ) ↔ ∃ ∈ Word 𝑃 𝑌 = ( 𝑀 Σg ) ) )
54 51 53 bitrid ( 𝑥 = 𝑌 → ( ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ ∃ ∈ Word 𝑃 𝑌 = ( 𝑀 Σg ) ) )
55 54 elrab3 ( 𝑌𝐵 → ( 𝑌 ∈ { 𝑥𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) } ↔ ∃ ∈ Word 𝑃 𝑌 = ( 𝑀 Σg ) ) )
56 55 biimpa ( ( 𝑌𝐵𝑌 ∈ { 𝑥𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) } ) → ∃ ∈ Word 𝑃 𝑌 = ( 𝑀 Σg ) )
57 18 48 56 syl2anc ( 𝜑 → ∃ ∈ Word 𝑃 𝑌 = ( 𝑀 Σg ) )
58 57 ad2antrr ( ( ( 𝜑𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) → ∃ ∈ Word 𝑃 𝑌 = ( 𝑀 Σg ) )
59 47 58 r19.29a ( ( ( 𝜑𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) → ∃ 𝑓 ∈ Word 𝑃 ( 𝑋 · 𝑌 ) = ( 𝑀 Σg 𝑓 ) )
60 10 8 eleqtrdi ( 𝜑𝑋 ∈ { 𝑥𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) } )
61 oveq2 ( 𝑓 = 𝑔 → ( 𝑀 Σg 𝑓 ) = ( 𝑀 Σg 𝑔 ) )
62 61 eqeq2d ( 𝑓 = 𝑔 → ( 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ 𝑥 = ( 𝑀 Σg 𝑔 ) ) )
63 62 cbvrexvw ( ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ ∃ 𝑔 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑔 ) )
64 eqeq1 ( 𝑥 = 𝑋 → ( 𝑥 = ( 𝑀 Σg 𝑔 ) ↔ 𝑋 = ( 𝑀 Σg 𝑔 ) ) )
65 64 rexbidv ( 𝑥 = 𝑋 → ( ∃ 𝑔 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑔 ) ↔ ∃ 𝑔 ∈ Word 𝑃 𝑋 = ( 𝑀 Σg 𝑔 ) ) )
66 63 65 bitrid ( 𝑥 = 𝑋 → ( ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ ∃ 𝑔 ∈ Word 𝑃 𝑋 = ( 𝑀 Σg 𝑔 ) ) )
67 66 elrab3 ( 𝑋𝐵 → ( 𝑋 ∈ { 𝑥𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) } ↔ ∃ 𝑔 ∈ Word 𝑃 𝑋 = ( 𝑀 Σg 𝑔 ) ) )
68 67 biimpa ( ( 𝑋𝐵𝑋 ∈ { 𝑥𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) } ) → ∃ 𝑔 ∈ Word 𝑃 𝑋 = ( 𝑀 Σg 𝑔 ) )
69 17 60 68 syl2anc ( 𝜑 → ∃ 𝑔 ∈ Word 𝑃 𝑋 = ( 𝑀 Σg 𝑔 ) )
70 59 69 r19.29a ( 𝜑 → ∃ 𝑓 ∈ Word 𝑃 ( 𝑋 · 𝑌 ) = ( 𝑀 Σg 𝑓 ) )
71 13 19 70 elrabd ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ { 𝑥𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) } )
72 71 8 eleqtrrdi ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝑆 )