Step |
Hyp |
Ref |
Expression |
1 |
|
1arithufd.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
1arithufd.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
1arithufd.u |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
4 |
|
1arithufd.p |
⊢ 𝑃 = ( RPrime ‘ 𝑅 ) |
5 |
|
1arithufd.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
6 |
|
1arithufd.r |
⊢ ( 𝜑 → 𝑅 ∈ UFD ) |
7 |
|
1arithufdlem.2 |
⊢ ( 𝜑 → ¬ 𝑅 ∈ DivRing ) |
8 |
|
1arithufdlem.s |
⊢ 𝑆 = { 𝑥 ∈ 𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) } |
9 |
|
1arithufdlem2.1 |
⊢ · = ( .r ‘ 𝑅 ) |
10 |
|
1arithufdlem2.2 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
11 |
|
1arithufdlem2.3 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑆 ) |
12 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑋 · 𝑌 ) → ( 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ ( 𝑋 · 𝑌 ) = ( 𝑀 Σg 𝑓 ) ) ) |
13 |
12
|
rexbidv |
⊢ ( 𝑥 = ( 𝑋 · 𝑌 ) → ( ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ ∃ 𝑓 ∈ Word 𝑃 ( 𝑋 · 𝑌 ) = ( 𝑀 Σg 𝑓 ) ) ) |
14 |
6
|
ufdidom |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
15 |
14
|
idomringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
16 |
8
|
ssrab3 |
⊢ 𝑆 ⊆ 𝐵 |
17 |
16 10
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
18 |
16 11
|
sselid |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
19 |
1 9 15 17 18
|
ringcld |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
20 |
|
oveq2 |
⊢ ( 𝑓 = ( 𝑔 ++ ℎ ) → ( 𝑀 Σg 𝑓 ) = ( 𝑀 Σg ( 𝑔 ++ ℎ ) ) ) |
21 |
20
|
eqeq2d |
⊢ ( 𝑓 = ( 𝑔 ++ ℎ ) → ( ( 𝑋 · 𝑌 ) = ( 𝑀 Σg 𝑓 ) ↔ ( 𝑋 · 𝑌 ) = ( 𝑀 Σg ( 𝑔 ++ ℎ ) ) ) ) |
22 |
|
ccatcl |
⊢ ( ( 𝑔 ∈ Word 𝑃 ∧ ℎ ∈ Word 𝑃 ) → ( 𝑔 ++ ℎ ) ∈ Word 𝑃 ) |
23 |
22
|
ad5ant24 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ∧ ℎ ∈ Word 𝑃 ) ∧ 𝑌 = ( 𝑀 Σg ℎ ) ) → ( 𝑔 ++ ℎ ) ∈ Word 𝑃 ) |
24 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ∧ ℎ ∈ Word 𝑃 ) ∧ 𝑌 = ( 𝑀 Σg ℎ ) ) → 𝑋 = ( 𝑀 Σg 𝑔 ) ) |
25 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ∧ ℎ ∈ Word 𝑃 ) ∧ 𝑌 = ( 𝑀 Σg ℎ ) ) → 𝑌 = ( 𝑀 Σg ℎ ) ) |
26 |
24 25
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ∧ ℎ ∈ Word 𝑃 ) ∧ 𝑌 = ( 𝑀 Σg ℎ ) ) → ( 𝑋 · 𝑌 ) = ( ( 𝑀 Σg 𝑔 ) · ( 𝑀 Σg ℎ ) ) ) |
27 |
5
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd ) |
28 |
15 27
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
29 |
28
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ∧ ℎ ∈ Word 𝑃 ) ∧ 𝑌 = ( 𝑀 Σg ℎ ) ) → 𝑀 ∈ Mnd ) |
30 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) → 𝑅 ∈ UFD ) |
31 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) → 𝑥 ∈ 𝑃 ) |
32 |
1 4 30 31
|
rprmcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑃 ) → 𝑥 ∈ 𝐵 ) |
33 |
32
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑃 → 𝑥 ∈ 𝐵 ) ) |
34 |
33
|
ssrdv |
⊢ ( 𝜑 → 𝑃 ⊆ 𝐵 ) |
35 |
|
sswrd |
⊢ ( 𝑃 ⊆ 𝐵 → Word 𝑃 ⊆ Word 𝐵 ) |
36 |
34 35
|
syl |
⊢ ( 𝜑 → Word 𝑃 ⊆ Word 𝐵 ) |
37 |
36
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ∧ ℎ ∈ Word 𝑃 ) ∧ 𝑌 = ( 𝑀 Σg ℎ ) ) → Word 𝑃 ⊆ Word 𝐵 ) |
38 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ∧ ℎ ∈ Word 𝑃 ) ∧ 𝑌 = ( 𝑀 Σg ℎ ) ) → 𝑔 ∈ Word 𝑃 ) |
39 |
37 38
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ∧ ℎ ∈ Word 𝑃 ) ∧ 𝑌 = ( 𝑀 Σg ℎ ) ) → 𝑔 ∈ Word 𝐵 ) |
40 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ∧ ℎ ∈ Word 𝑃 ) ∧ 𝑌 = ( 𝑀 Σg ℎ ) ) → ℎ ∈ Word 𝑃 ) |
41 |
37 40
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ∧ ℎ ∈ Word 𝑃 ) ∧ 𝑌 = ( 𝑀 Σg ℎ ) ) → ℎ ∈ Word 𝐵 ) |
42 |
5 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
43 |
5 9
|
mgpplusg |
⊢ · = ( +g ‘ 𝑀 ) |
44 |
42 43
|
gsumccat |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑔 ∈ Word 𝐵 ∧ ℎ ∈ Word 𝐵 ) → ( 𝑀 Σg ( 𝑔 ++ ℎ ) ) = ( ( 𝑀 Σg 𝑔 ) · ( 𝑀 Σg ℎ ) ) ) |
45 |
29 39 41 44
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ∧ ℎ ∈ Word 𝑃 ) ∧ 𝑌 = ( 𝑀 Σg ℎ ) ) → ( 𝑀 Σg ( 𝑔 ++ ℎ ) ) = ( ( 𝑀 Σg 𝑔 ) · ( 𝑀 Σg ℎ ) ) ) |
46 |
26 45
|
eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ∧ ℎ ∈ Word 𝑃 ) ∧ 𝑌 = ( 𝑀 Σg ℎ ) ) → ( 𝑋 · 𝑌 ) = ( 𝑀 Σg ( 𝑔 ++ ℎ ) ) ) |
47 |
21 23 46
|
rspcedvdw |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ∧ ℎ ∈ Word 𝑃 ) ∧ 𝑌 = ( 𝑀 Σg ℎ ) ) → ∃ 𝑓 ∈ Word 𝑃 ( 𝑋 · 𝑌 ) = ( 𝑀 Σg 𝑓 ) ) |
48 |
11 8
|
eleqtrdi |
⊢ ( 𝜑 → 𝑌 ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) } ) |
49 |
|
oveq2 |
⊢ ( 𝑓 = ℎ → ( 𝑀 Σg 𝑓 ) = ( 𝑀 Σg ℎ ) ) |
50 |
49
|
eqeq2d |
⊢ ( 𝑓 = ℎ → ( 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ 𝑥 = ( 𝑀 Σg ℎ ) ) ) |
51 |
50
|
cbvrexvw |
⊢ ( ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ ∃ ℎ ∈ Word 𝑃 𝑥 = ( 𝑀 Σg ℎ ) ) |
52 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 = ( 𝑀 Σg ℎ ) ↔ 𝑌 = ( 𝑀 Σg ℎ ) ) ) |
53 |
52
|
rexbidv |
⊢ ( 𝑥 = 𝑌 → ( ∃ ℎ ∈ Word 𝑃 𝑥 = ( 𝑀 Σg ℎ ) ↔ ∃ ℎ ∈ Word 𝑃 𝑌 = ( 𝑀 Σg ℎ ) ) ) |
54 |
51 53
|
bitrid |
⊢ ( 𝑥 = 𝑌 → ( ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ ∃ ℎ ∈ Word 𝑃 𝑌 = ( 𝑀 Σg ℎ ) ) ) |
55 |
54
|
elrab3 |
⊢ ( 𝑌 ∈ 𝐵 → ( 𝑌 ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) } ↔ ∃ ℎ ∈ Word 𝑃 𝑌 = ( 𝑀 Σg ℎ ) ) ) |
56 |
55
|
biimpa |
⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) } ) → ∃ ℎ ∈ Word 𝑃 𝑌 = ( 𝑀 Σg ℎ ) ) |
57 |
18 48 56
|
syl2anc |
⊢ ( 𝜑 → ∃ ℎ ∈ Word 𝑃 𝑌 = ( 𝑀 Σg ℎ ) ) |
58 |
57
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) → ∃ ℎ ∈ Word 𝑃 𝑌 = ( 𝑀 Σg ℎ ) ) |
59 |
47 58
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ Word 𝑃 ) ∧ 𝑋 = ( 𝑀 Σg 𝑔 ) ) → ∃ 𝑓 ∈ Word 𝑃 ( 𝑋 · 𝑌 ) = ( 𝑀 Σg 𝑓 ) ) |
60 |
10 8
|
eleqtrdi |
⊢ ( 𝜑 → 𝑋 ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) } ) |
61 |
|
oveq2 |
⊢ ( 𝑓 = 𝑔 → ( 𝑀 Σg 𝑓 ) = ( 𝑀 Σg 𝑔 ) ) |
62 |
61
|
eqeq2d |
⊢ ( 𝑓 = 𝑔 → ( 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ 𝑥 = ( 𝑀 Σg 𝑔 ) ) ) |
63 |
62
|
cbvrexvw |
⊢ ( ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ ∃ 𝑔 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑔 ) ) |
64 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = ( 𝑀 Σg 𝑔 ) ↔ 𝑋 = ( 𝑀 Σg 𝑔 ) ) ) |
65 |
64
|
rexbidv |
⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑔 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑔 ) ↔ ∃ 𝑔 ∈ Word 𝑃 𝑋 = ( 𝑀 Σg 𝑔 ) ) ) |
66 |
63 65
|
bitrid |
⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) ↔ ∃ 𝑔 ∈ Word 𝑃 𝑋 = ( 𝑀 Σg 𝑔 ) ) ) |
67 |
66
|
elrab3 |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝑋 ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) } ↔ ∃ 𝑔 ∈ Word 𝑃 𝑋 = ( 𝑀 Σg 𝑔 ) ) ) |
68 |
67
|
biimpa |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) } ) → ∃ 𝑔 ∈ Word 𝑃 𝑋 = ( 𝑀 Σg 𝑔 ) ) |
69 |
17 60 68
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑔 ∈ Word 𝑃 𝑋 = ( 𝑀 Σg 𝑔 ) ) |
70 |
59 69
|
r19.29a |
⊢ ( 𝜑 → ∃ 𝑓 ∈ Word 𝑃 ( 𝑋 · 𝑌 ) = ( 𝑀 Σg 𝑓 ) ) |
71 |
13 19 70
|
elrabd |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ { 𝑥 ∈ 𝐵 ∣ ∃ 𝑓 ∈ Word 𝑃 𝑥 = ( 𝑀 Σg 𝑓 ) } ) |
72 |
71 8
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝑆 ) |