Step |
Hyp |
Ref |
Expression |
1 |
|
1arithidom.u |
|
2 |
|
1arithidom.i |
|
3 |
|
1arithidom.m |
|
4 |
|
1arithidom.t |
|
5 |
|
1arithidom.j |
|
6 |
|
1arithidom.r |
|
7 |
|
1arithidom.f |
|
8 |
|
1arithidom.g |
|
9 |
|
1arithidom.1 |
|
10 |
6
|
idomringd |
|
11 |
|
eqid |
|
12 |
1 11
|
1unit |
|
13 |
10 12
|
syl |
|
14 |
|
oveq1 |
|
15 |
14
|
adantl |
|
16 |
|
eqid |
|
17 |
10
|
adantr |
|
18 |
3 16
|
mgpbas |
|
19 |
3 11
|
ringidval |
|
20 |
|
id |
|
21 |
20
|
idomcringd |
|
22 |
3
|
crngmgp |
|
23 |
21 22
|
syl |
|
24 |
6 23
|
syl |
|
25 |
|
ovexd |
|
26 |
|
eqidd |
|
27 |
26 8
|
wrdfd |
|
28 |
6
|
adantr |
|
29 |
|
simpr |
|
30 |
16 2 28 29
|
rprmcl |
|
31 |
30
|
ex |
|
32 |
31
|
ssrdv |
|
33 |
27 32
|
fssd |
|
34 |
13 8
|
wrdfsupp |
|
35 |
18 19 24 25 33 34
|
gsumcl |
|
36 |
35
|
adantr |
|
37 |
16 4 11 17 36
|
ringlidmd |
|
38 |
15 37
|
eqtrd |
|
39 |
38
|
eqeq2d |
|
40 |
13 39 9
|
rspcedvd |
|
41 |
|
oveq2 |
|
42 |
41
|
oveq2d |
|
43 |
42
|
eqeq2d |
|
44 |
43
|
rexbidv |
|
45 |
|
eqeq1 |
|
46 |
45
|
anbi2d |
|
47 |
46
|
rexbidv |
|
48 |
47
|
exbidv |
|
49 |
44 48
|
imbi12d |
|
50 |
|
oveq2 |
|
51 |
50
|
eqeq1d |
|
52 |
51
|
rexbidv |
|
53 |
|
fveq2 |
|
54 |
53
|
oveq2d |
|
55 |
54
|
oveq2d |
|
56 |
|
eqidd |
|
57 |
56 54 54
|
f1oeq123d |
|
58 |
|
coeq1 |
|
59 |
58
|
oveq2d |
|
60 |
59
|
eqeq2d |
|
61 |
57 60
|
anbi12d |
|
62 |
55 61
|
rexeqbidv |
|
63 |
62
|
exbidv |
|
64 |
52 63
|
imbi12d |
|
65 |
64
|
ralbidv |
|
66 |
65
|
imbi2d |
|
67 |
|
oveq2 |
|
68 |
67
|
eqeq1d |
|
69 |
68
|
rexbidv |
|
70 |
|
fveq2 |
|
71 |
70
|
oveq2d |
|
72 |
71
|
oveq2d |
|
73 |
|
eqidd |
|
74 |
73 71 71
|
f1oeq123d |
|
75 |
|
coeq1 |
|
76 |
75
|
oveq2d |
|
77 |
76
|
eqeq2d |
|
78 |
74 77
|
anbi12d |
|
79 |
72 78
|
rexeqbidv |
|
80 |
79
|
exbidv |
|
81 |
69 80
|
imbi12d |
|
82 |
81
|
ralbidv |
|
83 |
82
|
imbi2d |
|
84 |
|
oveq2 |
|
85 |
84
|
eqeq1d |
|
86 |
85
|
rexbidv |
|
87 |
|
fveq2 |
|
88 |
87
|
oveq2d |
|
89 |
88
|
oveq2d |
|
90 |
|
eqidd |
|
91 |
90 88 88
|
f1oeq123d |
|
92 |
|
coeq1 |
|
93 |
92
|
oveq2d |
|
94 |
93
|
eqeq2d |
|
95 |
91 94
|
anbi12d |
|
96 |
89 95
|
rexeqbidv |
|
97 |
96
|
exbidv |
|
98 |
86 97
|
imbi12d |
|
99 |
98
|
ralbidv |
|
100 |
99
|
imbi2d |
|
101 |
|
oveq2 |
|
102 |
101
|
eqeq1d |
|
103 |
102
|
rexbidv |
|
104 |
|
fveq2 |
|
105 |
104
|
oveq2d |
|
106 |
105
|
oveq2d |
|
107 |
|
eqidd |
|
108 |
107 105 105
|
f1oeq123d |
|
109 |
|
coeq1 |
|
110 |
109
|
oveq2d |
|
111 |
110
|
eqeq2d |
|
112 |
108 111
|
anbi12d |
|
113 |
106 112
|
rexeqbidv |
|
114 |
113
|
exbidv |
|
115 |
103 114
|
imbi12d |
|
116 |
115
|
ralbidv |
|
117 |
116
|
imbi2d |
|
118 |
|
0ex |
|
119 |
118
|
a1i |
|
120 |
118
|
snid |
|
121 |
1
|
fvexi |
|
122 |
|
mapdm0 |
|
123 |
121 122
|
ax-mp |
|
124 |
120 123
|
eleqtrri |
|
125 |
124
|
a1i |
|
126 |
|
f1o0 |
|
127 |
126
|
biantrur |
|
128 |
|
co02 |
|
129 |
128
|
oveq2i |
|
130 |
|
of0r |
|
131 |
129 130
|
eqtri |
|
132 |
131
|
eqeq2i |
|
133 |
127 132
|
bitr3i |
|
134 |
133
|
a1i |
|
135 |
|
simpl |
|
136 |
135
|
idomcringd |
|
137 |
136
|
ad2antrr |
|
138 |
|
simplr |
|
139 |
16 1
|
unitcl |
|
140 |
138 139
|
syl |
|
141 |
137 22
|
syl |
|
142 |
|
ovexd |
|
143 |
|
eqidd |
|
144 |
|
simpl |
|
145 |
|
simpr |
|
146 |
16 2 144 145
|
rprmcl |
|
147 |
146
|
ex |
|
148 |
147
|
ssrdv |
|
149 |
|
sswrd |
|
150 |
148 149
|
syl |
|
151 |
150
|
sselda |
|
152 |
151
|
ad2antrr |
|
153 |
143 152
|
wrdfd |
|
154 |
135
|
idomringd |
|
155 |
154 12
|
syl |
|
156 |
155
|
ad2antrr |
|
157 |
156 152
|
wrdfsupp |
|
158 |
18 19 141 142 153 157
|
gsumcl |
|
159 |
|
simpr |
|
160 |
19
|
gsum0 |
|
161 |
160 156
|
eqeltrid |
|
162 |
159 161
|
eqeltrrd |
|
163 |
1 4 16
|
unitmulclb |
|
164 |
163
|
biimpa |
|
165 |
137 140 158 162 164
|
syl31anc |
|
166 |
165
|
simprd |
|
167 |
166
|
r19.29an |
|
168 |
16 1 3 136 151
|
unitprodclb |
|
169 |
168
|
adantr |
|
170 |
167 169
|
mpbid |
|
171 |
170
|
adantr |
|
172 |
|
eqidd |
|
173 |
|
simpr |
|
174 |
172 173
|
wrdfd |
|
175 |
174
|
freld |
|
176 |
175
|
ad2antrr |
|
177 |
|
simpr |
|
178 |
|
relrn0 |
|
179 |
178
|
necon3bid |
|
180 |
179
|
biimpa |
|
181 |
176 177 180
|
syl2anc |
|
182 |
|
n0 |
|
183 |
181 182
|
sylib |
|
184 |
|
simpr |
|
185 |
135
|
ad3antrrr |
|
186 |
174
|
frnd |
|
187 |
186
|
ad2antrr |
|
188 |
187
|
sselda |
|
189 |
2 1 185 188
|
rprmnunit |
|
190 |
|
nelss |
|
191 |
184 189 190
|
syl2anc |
|
192 |
183 191
|
exlimddv |
|
193 |
171 192
|
pm2.65da |
|
194 |
|
nne |
|
195 |
193 194
|
sylib |
|
196 |
125 134 195
|
rspcedvd |
|
197 |
|
hash0 |
|
198 |
197
|
oveq2i |
|
199 |
|
fzo0 |
|
200 |
198 199
|
eqtri |
|
201 |
200
|
oveq2i |
|
202 |
201
|
a1i |
|
203 |
|
id |
|
204 |
200
|
a1i |
|
205 |
203 204 204
|
f1oeq123d |
|
206 |
|
coeq2 |
|
207 |
206
|
oveq2d |
|
208 |
207
|
eqeq2d |
|
209 |
205 208
|
anbi12d |
|
210 |
202 209
|
rexeqbidv |
|
211 |
119 196 210
|
spcedv |
|
212 |
211
|
ex |
|
213 |
212
|
ralrimiva |
|
214 |
|
eqid |
|
215 |
|
simp-4r |
|
216 |
|
simp-4r |
|
217 |
216
|
ad2antrr |
|
218 |
|
eqid |
|
219 |
214 215 217 218
|
wrdpmtrlast |
|
220 |
|
eqid |
|
221 |
|
simp-5r |
|
222 |
221
|
ad6antr |
|
223 |
|
simp-5l |
|
224 |
223
|
ad8antr |
|
225 |
|
eqidd |
|
226 |
|
simp-7r |
|
227 |
226
|
ad6antr |
|
228 |
|
simplr |
|
229 |
228
|
ad10antr |
|
230 |
222 229
|
mpd |
|
231 |
217
|
ad4antr |
|
232 |
|
simp-9r |
|
233 |
215
|
ad4antr |
|
234 |
|
simpr |
|
235 |
234
|
ad6antr |
|
236 |
|
simp-6r |
|
237 |
|
simp-5r |
|
238 |
|
simp-4r |
|
239 |
|
simpllr |
|
240 |
|
simplr |
|
241 |
|
simpr |
|
242 |
1 2 3 4 220 222 224 224 225 227 230 231 232 233 235 236 237 238 239 240 241
|
1arithidomlem1 |
|
243 |
|
ovexd |
|
244 |
|
vex |
|
245 |
244
|
cnvex |
|
246 |
245
|
a1i |
|
247 |
243 246
|
coexd |
|
248 |
|
oveq1 |
|
249 |
248
|
eqeq2d |
|
250 |
249
|
anbi2d |
|
251 |
121
|
a1i |
|
252 |
|
ovexd |
|
253 |
|
simplr |
|
254 |
|
elmapi |
|
255 |
253 254
|
syl |
|
256 |
|
iswrdi |
|
257 |
255 256
|
syl |
|
258 |
|
ccatws1len |
|
259 |
257 258
|
syl |
|
260 |
|
elmapfn |
|
261 |
|
hashfn |
|
262 |
253 260 261
|
3syl |
|
263 |
223
|
ad10antr |
|
264 |
|
lencl |
|
265 |
263 264
|
syl |
|
266 |
|
hashfzo0 |
|
267 |
265 266
|
syl |
|
268 |
262 267
|
eqtrd |
|
269 |
268
|
oveq1d |
|
270 |
|
simprr |
|
271 |
270
|
dmeqd |
|
272 |
|
f1of |
|
273 |
|
iswrdi |
|
274 |
238 272 273
|
3syl |
|
275 |
|
eqidd |
|
276 |
275 216
|
wrdfd |
|
277 |
276
|
ad6antr |
|
278 |
|
wrdco |
|
279 |
274 277 278
|
syl2anc |
|
280 |
279
|
ad2antrr |
|
281 |
|
elfzo0 |
|
282 |
281
|
simp2bi |
|
283 |
|
nnm1nn0 |
|
284 |
233 282 283
|
3syl |
|
285 |
|
lenco |
|
286 |
274 277 285
|
syl2anc |
|
287 |
|
lencl |
|
288 |
274 287
|
syl |
|
289 |
286 288
|
eqeltrd |
|
290 |
|
lencl |
|
291 |
231 290
|
syl |
|
292 |
291
|
nn0red |
|
293 |
292
|
lem1d |
|
294 |
238 272
|
syl |
|
295 |
|
ffn |
|
296 |
|
hashfn |
|
297 |
294 295 296
|
3syl |
|
298 |
|
hashfzo0 |
|
299 |
231 290 298
|
3syl |
|
300 |
286 297 299
|
3eqtrrd |
|
301 |
293 300
|
breqtrd |
|
302 |
|
elfz2nn0 |
|
303 |
284 289 301 302
|
syl3anbrc |
|
304 |
303
|
ad2antrr |
|
305 |
|
pfxfn |
|
306 |
280 304 305
|
syl2anc |
|
307 |
306
|
fndmd |
|
308 |
222
|
idomringd |
|
309 |
308
|
ad3antrrr |
|
310 |
|
simprl |
|
311 |
16 1
|
unitcl |
|
312 |
310 311
|
syl |
|
313 |
222
|
ad3antrrr |
|
314 |
|
simprr |
|
315 |
16 2 313 314
|
rprmcl |
|
316 |
16 4 309 312 315
|
ringcld |
|
317 |
|
eqidd |
|
318 |
317 263
|
wrdfd |
|
319 |
|
simprl |
|
320 |
|
f1of |
|
321 |
319 320
|
syl |
|
322 |
318 321
|
fcod |
|
323 |
|
ovexd |
|
324 |
|
inidm |
|
325 |
316 255 322 323 323 324
|
off |
|
326 |
325
|
fdmd |
|
327 |
271 307 326
|
3eqtr3d |
|
328 |
284
|
ad2antrr |
|
329 |
328 265
|
fzo0opth |
|
330 |
327 329
|
mpbid |
|
331 |
330
|
oveq1d |
|
332 |
282
|
ad10antlr |
|
333 |
332
|
nncnd |
|
334 |
|
npcan1 |
|
335 |
333 334
|
syl |
|
336 |
331 335
|
eqtr3d |
|
337 |
259 269 336
|
3eqtrd |
|
338 |
337
|
oveq2d |
|
339 |
|
eqidd |
|
340 |
236
|
ad2antrr |
|
341 |
|
ccatws1cl |
|
342 |
257 340 341
|
syl2anc |
|
343 |
339 342
|
wrdfd |
|
344 |
338 343
|
feq2dd |
|
345 |
|
ccatws1len |
|
346 |
263 345
|
syl |
|
347 |
346 336
|
eqtrd |
|
348 |
347
|
oveq2d |
|
349 |
348
|
eqcomd |
|
350 |
238
|
ad2antrr |
|
351 |
|
f1ocnv |
|
352 |
|
f1of |
|
353 |
350 351 352
|
3syl |
|
354 |
349 353
|
feq2dd |
|
355 |
344 354
|
fcod |
|
356 |
251 252 355
|
elmapdd |
|
357 |
222
|
ad2antrr |
|
358 |
|
eqidd |
|
359 |
227
|
ad2antrr |
|
360 |
230
|
ad2antrr |
|
361 |
231
|
ad2antrr |
|
362 |
232
|
ad2antrr |
|
363 |
233
|
ad2antrr |
|
364 |
235
|
ad2antrr |
|
365 |
237
|
ad2antrr |
|
366 |
|
simp-5r |
|
367 |
|
simp-4r |
|
368 |
|
simpllr |
|
369 |
1 2 3 4 220 357 263 263 358 359 360 361 362 363 364 340 365 350 366 367 368 253 319 270
|
1arithidomlem2 |
|
370 |
250 356 369
|
rspcedvdw |
|
371 |
|
f1oeq1 |
|
372 |
|
coeq2 |
|
373 |
372
|
oveq2d |
|
374 |
373
|
eqeq2d |
|
375 |
371 374
|
anbi12d |
|
376 |
375
|
rexbidv |
|
377 |
247 370 376
|
spcedv |
|
378 |
377
|
r19.29an |
|
379 |
242 378
|
exlimddv |
|
380 |
|
simp-7r |
|
381 |
|
oveq1 |
|
382 |
381
|
eqeq2d |
|
383 |
382
|
cbvrexvw |
|
384 |
380 383
|
sylib |
|
385 |
379 384
|
r19.29a |
|
386 |
385
|
anasss |
|
387 |
219 386
|
exlimddv |
|
388 |
|
eqid |
|
389 |
|
simplr |
|
390 |
276 389
|
ffvelcdmd |
|
391 |
16 2 388 221 226 234 390 4 1
|
rprmasso3 |
|
392 |
387 391
|
r19.29a |
|
393 |
|
suppssdm |
|
394 |
|
eqidd |
|
395 |
|
simpllr |
|
396 |
395 150
|
syl |
|
397 |
396
|
ad2antrr |
|
398 |
|
simp-4r |
|
399 |
397 398
|
sseldd |
|
400 |
394 399
|
wrdfd |
|
401 |
393 400
|
fssdm |
|
402 |
21
|
ad5antlr |
|
403 |
|
simp-5r |
|
404 |
403
|
ad2antrr |
|
405 |
|
ovexd |
|
406 |
|
fvexd |
|
407 |
406 398
|
wrdfsupp |
|
408 |
|
simp-5r |
|
409 |
|
simplr |
|
410 |
16 1
|
unitcl |
|
411 |
409 410
|
syl |
|
412 |
23
|
ad5antlr |
|
413 |
18 19 412 405 400 407
|
gsumcl |
|
414 |
16 2 395 403
|
rprmcl |
|
415 |
414
|
ad2antrr |
|
416 |
|
ovexd |
|
417 |
|
eqidd |
|
418 |
396 223
|
sseldd |
|
419 |
418
|
ad2antrr |
|
420 |
417 419
|
wrdfd |
|
421 |
406 419
|
wrdfsupp |
|
422 |
18 19 412 416 420 421
|
gsumcl |
|
423 |
16 388 4
|
dvdsrmul |
|
424 |
415 422 423
|
syl2anc |
|
425 |
20
|
idomringd |
|
426 |
3
|
ringmgp |
|
427 |
425 426
|
syl |
|
428 |
427
|
ad3antlr |
|
429 |
3 4
|
mgpplusg |
|
430 |
18 429
|
gsumccatsn |
|
431 |
428 418 414 430
|
syl3anc |
|
432 |
431
|
ad2antrr |
|
433 |
|
simpr |
|
434 |
432 433
|
eqtr3d |
|
435 |
424 434
|
breqtrd |
|
436 |
16 2 388 4 408 404 411 413 435
|
rprmdvds |
|
437 |
1 2 388 402 404 409
|
rprmndvdsru |
|
438 |
436 437
|
orcnd |
|
439 |
16 2 388 11 3 402 404 405 407 400 438
|
rprmdvdsprod |
|
440 |
|
ssrexv |
|
441 |
401 439 440
|
sylc |
|
442 |
383
|
biimpi |
|
443 |
442
|
adantl |
|
444 |
441 443
|
r19.29a |
|
445 |
392 444
|
r19.29a |
|
446 |
445
|
ex |
|
447 |
446
|
ralrimiva |
|
448 |
|
f1oeq1 |
|
449 |
|
coeq2 |
|
450 |
449
|
oveq2d |
|
451 |
450
|
eqeq2d |
|
452 |
448 451
|
anbi12d |
|
453 |
452
|
rexbidv |
|
454 |
453
|
cbvexvw |
|
455 |
|
oveq1 |
|
456 |
455
|
eqeq2d |
|
457 |
456
|
anbi2d |
|
458 |
457
|
cbvrexvw |
|
459 |
458
|
exbii |
|
460 |
454 459
|
bitri |
|
461 |
460
|
imbi2i |
|
462 |
461
|
ralbii |
|
463 |
|
oveq2 |
|
464 |
463
|
oveq2d |
|
465 |
464
|
eqeq2d |
|
466 |
465
|
rexbidv |
|
467 |
|
eqeq1 |
|
468 |
467
|
anbi2d |
|
469 |
468
|
rexbidv |
|
470 |
469
|
exbidv |
|
471 |
466 470
|
imbi12d |
|
472 |
471
|
cbvralvw |
|
473 |
462 472
|
bitri |
|
474 |
447 473
|
sylibr |
|
475 |
474
|
exp31 |
|
476 |
66 83 100 117 213 475
|
wrdind |
|
477 |
7 6 476
|
sylc |
|
478 |
49 477 8
|
rspcdva |
|
479 |
40 478
|
mpd |
|
480 |
5
|
oveq2i |
|
481 |
|
f1oeq23 |
|
482 |
5 5 481
|
mp2an |
|
483 |
482
|
anbi1i |
|
484 |
480 483
|
rexeqbii |
|
485 |
484
|
exbii |
|
486 |
479 485
|
sylibr |
|