Step |
Hyp |
Ref |
Expression |
1 |
|
1arithidom.u |
|
2 |
|
1arithidom.i |
|
3 |
|
1arithidom.m |
|
4 |
|
1arithidom.t |
|
5 |
|
1arithidom.j |
|
6 |
|
1arithidom.r |
|
7 |
|
1arithidom.f |
|
8 |
|
1arithidom.g |
|
9 |
|
1arithidom.1 |
|
10 |
|
1arithidomlem.1 |
|
11 |
|
1arithidomlem.2 |
|
12 |
|
1arithidomlem.3 |
|
13 |
|
1arithidomlem.4 |
|
14 |
|
1arithidomlem.5 |
|
15 |
|
1arithidomlem.6 |
|
16 |
|
1arithidomlem.7 |
|
17 |
|
1arithidomlem.8 |
|
18 |
|
1arithidomlem.9 |
|
19 |
|
1arithidomlem.10 |
|
20 |
|
1arithidomlem.11 |
|
21 |
|
1arithidomlem.12 |
|
22 |
|
oveq1 |
|
23 |
22
|
eqeq2d |
|
24 |
6
|
idomringd |
|
25 |
1 4
|
unitmulcl |
|
26 |
24 20 16 25
|
syl3anc |
|
27 |
|
eqid |
|
28 |
|
eqid |
|
29 |
3 27
|
mgpbas |
|
30 |
|
eqid |
|
31 |
3 30
|
ringidval |
|
32 |
|
id |
|
33 |
32
|
idomcringd |
|
34 |
3
|
crngmgp |
|
35 |
33 34
|
syl |
|
36 |
6 35
|
syl |
|
37 |
|
ovexd |
|
38 |
|
eqidd |
|
39 |
|
simpl |
|
40 |
|
simpr |
|
41 |
27 2 39 40
|
rprmcl |
|
42 |
41
|
ex |
|
43 |
42
|
ssrdv |
|
44 |
|
sswrd |
|
45 |
6 43 44
|
3syl |
|
46 |
45 7
|
sseldd |
|
47 |
38 46
|
wrdfd |
|
48 |
|
fvexd |
|
49 |
48 7
|
wrdfsupp |
|
50 |
29 31 36 37 47 49
|
gsumcl |
|
51 |
27 1
|
unitcl |
|
52 |
20 51
|
syl |
|
53 |
27 1
|
unitcl |
|
54 |
16 53
|
syl |
|
55 |
27 4 24 52 54
|
ringcld |
|
56 |
|
ovexd |
|
57 |
|
f1of |
|
58 |
|
iswrdi |
|
59 |
18 57 58
|
3syl |
|
60 |
|
eqidd |
|
61 |
60 12
|
wrdfd |
|
62 |
|
wrdco |
|
63 |
59 61 62
|
syl2anc |
|
64 |
|
elfzo0 |
|
65 |
64
|
simp2bi |
|
66 |
|
nnm1nn0 |
|
67 |
14 65 66
|
3syl |
|
68 |
|
lenco |
|
69 |
59 61 68
|
syl2anc |
|
70 |
|
lencl |
|
71 |
59 70
|
syl |
|
72 |
69 71
|
eqeltrd |
|
73 |
|
lencl |
|
74 |
12 73
|
syl |
|
75 |
74
|
nn0red |
|
76 |
75
|
lem1d |
|
77 |
18 57
|
syl |
|
78 |
|
ffn |
|
79 |
|
hashfn |
|
80 |
77 78 79
|
3syl |
|
81 |
|
hashfzo0 |
|
82 |
12 73 81
|
3syl |
|
83 |
69 80 82
|
3eqtrrd |
|
84 |
76 83
|
breqtrd |
|
85 |
|
elfz2nn0 |
|
86 |
67 72 84 85
|
syl3anbrc |
|
87 |
|
pfxlen |
|
88 |
63 86 87
|
syl2anc |
|
89 |
88
|
eqcomd |
|
90 |
|
pfxcl |
|
91 |
63 90
|
syl |
|
92 |
45 91
|
sseldd |
|
93 |
89 92
|
wrdfd |
|
94 |
32
|
idomringd |
|
95 |
1 30
|
1unit |
|
96 |
6 94 95
|
3syl |
|
97 |
96 91
|
wrdfsupp |
|
98 |
29 31 36 56 93 97
|
gsumcl |
|
99 |
27 4 24 55 98
|
ringcld |
|
100 |
27 2 6 10
|
rprmcl |
|
101 |
2 28 6 10
|
rprmnz |
|
102 |
100 101
|
eldifsnd |
|
103 |
3
|
ringmgp |
|
104 |
94 103
|
syl |
|
105 |
6 104
|
syl |
|
106 |
3 4
|
mgpplusg |
|
107 |
29 106
|
gsumccatsn |
|
108 |
105 46 100 107
|
syl3anc |
|
109 |
|
ovexd |
|
110 |
45 12
|
sseldd |
|
111 |
60 110
|
wrdfd |
|
112 |
48 12
|
wrdfsupp |
|
113 |
29 31 36 109 111 112 18
|
gsumf1o |
|
114 |
113
|
oveq2d |
|
115 |
21 108 114
|
3eqtr3d |
|
116 |
29 106
|
cmn12 |
|
117 |
36 54 98 100 116
|
syl13anc |
|
118 |
27 4 24 54 98 100
|
ringassd |
|
119 |
111 14
|
ffvelcdmd |
|
120 |
29 106
|
gsumccatsn |
|
121 |
105 92 119 120
|
syl3anc |
|
122 |
19
|
oveq2d |
|
123 |
17
|
oveq2d |
|
124 |
121 122 123
|
3eqtr4d |
|
125 |
117 118 124
|
3eqtr4rd |
|
126 |
125
|
oveq2d |
|
127 |
27 4 24 52 54 98
|
ringassd |
|
128 |
127
|
oveq1d |
|
129 |
27 4 24 54 98
|
ringcld |
|
130 |
27 4 24 52 129 100
|
ringassd |
|
131 |
128 130
|
eqtr2d |
|
132 |
115 126 131
|
3eqtrd |
|
133 |
27 28 4 50 99 102 6 132
|
idomrcan |
|
134 |
23 26 133
|
rspcedvdw |
|
135 |
|
oveq1 |
|
136 |
135
|
eqeq2d |
|
137 |
136
|
cbvrexvw |
|
138 |
134 137
|
sylibr |
|
139 |
|
oveq2 |
|
140 |
139
|
oveq2d |
|
141 |
140
|
eqeq2d |
|
142 |
141
|
rexbidv |
|
143 |
|
eqeq1 |
|
144 |
143
|
anbi2d |
|
145 |
144
|
rexbidv |
|
146 |
145
|
exbidv |
|
147 |
142 146
|
imbi12d |
|
148 |
147 11 91
|
rspcdva |
|
149 |
138 148
|
mpd |
|
150 |
|
oveq1 |
|
151 |
150
|
eqeq2d |
|
152 |
151
|
anbi2d |
|
153 |
152
|
cbvrexvw |
|
154 |
|
f1oeq1 |
|
155 |
|
coeq2 |
|
156 |
155
|
oveq2d |
|
157 |
156
|
eqeq2d |
|
158 |
154 157
|
anbi12d |
|
159 |
158
|
rexbidv |
|
160 |
153 159
|
bitrid |
|
161 |
160
|
cbvexvw |
|
162 |
149 161
|
sylibr |
|