Metamath Proof Explorer


Theorem of0r

Description: Function operation with the empty function. (Contributed by Thierry Arnoux, 27-May-2025)

Ref Expression
Assertion of0r F R f =

Proof

Step Hyp Ref Expression
1 df-of f R = f V , g V x dom f dom g f x R g x
2 1 a1i F V f R = f V , g V x dom f dom g f x R g x
3 dmeq f = F dom f = dom F
4 dmeq g = dom g = dom
5 3 4 ineqan12d f = F g = dom f dom g = dom F dom
6 5 mpteq1d f = F g = x dom f dom g f x R g x = x dom F dom f x R g x
7 6 adantl F V f = F g = x dom f dom g f x R g x = x dom F dom f x R g x
8 dm0 dom =
9 8 ineq2i dom F dom = dom F
10 in0 dom F =
11 9 10 eqtri dom F dom =
12 11 a1i F V f = F g = dom F dom =
13 12 mpteq1d F V f = F g = x dom F dom f x R g x = x f x R g x
14 mpt0 x f x R g x =
15 14 a1i F V f = F g = x f x R g x =
16 7 13 15 3eqtrd F V f = F g = x dom f dom g f x R g x =
17 id F V F V
18 0ex V
19 18 a1i F V V
20 2 16 17 19 19 ovmpod F V F R f =
21 1 reldmmpo Rel dom f R
22 21 ovprc1 ¬ F V F R f =
23 20 22 pm2.61i F R f =